Moving Beyond CT Body Composition Analysis

豪斯多夫距离 分割 四分位间距 置信区间 磁共振成像 计算机科学 人工智能 掷骰子 计算机断层摄影术 核医学 医学 模式识别(心理学) 放射科 数学 统计 内科学
作者
Johannes Haubold,Olivia Barbara Pollok,Mathias Meetschen,Luca Salhöfer,Cynthia Sabrina Schmidt,Christian Bojahr,Jannis Straus,Benedikt M. Schaarschmidt,Katarzyna Borys,Judith Kohnke,Yutong Wen,Marcel Opitz,Lale Umutlu,Michael Forsting,Christoph M. Friedrich,Felix Nensa,René Hosch
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rli.0000000000001162
摘要

Objectives Deep learning for body composition analysis (BCA) is gaining traction in clinical research, offering rapid and automated ways to measure body features like muscle or fat volume. However, most current methods prioritize computed tomography (CT) over magnetic resonance imaging (MRI). This study presents a deep learning approach for automatic BCA using MR T2-weighted sequences. Methods Initial BCA segmentations (10 body regions and 4 body parts) were generated by mapping CT segmentations from body and organ analysis (BOA) model to synthetic MR images created using an in-house trained CycleGAN. In total, 30 synthetic data pairs were used to train an initial nnU-Net V2 in 3D, and this preliminary model was then applied to segment 120 real T2-weighted MRI sequences from 120 patients (46% female) with a median age of 56 (interquartile range, 17.75), generating early segmentation proposals. These proposals were refined by human annotators, and nnU-Net V2 2D and 3D models were trained using 5-fold cross-validation on this optimized dataset of real MR images. Performance was evaluated using Sørensen-Dice, Surface Dice, and Hausdorff Distance metrics including 95% confidence intervals for cross-validation and ensemble models. Results The 3D ensemble segmentation model achieved the highest Dice scores for the body region classes: bone 0.926 (95% confidence interval [CI], 0.914–0.937), muscle 0.968 (95% CI, 0.961–0.975), subcutaneous fat 0.98 (95% CI, 0.971–0.986), nervous system 0.973 (95% CI, 0.965–0.98), thoracic cavity 0.978 (95% CI, 0.969–0.984), abdominal cavity 0.989 (95% CI, 0.986–0.991), mediastinum 0.92 (95% CI, 0.901–0.936), pericardium 0.945 (95% CI, 0.924–0.96), brain 0.966 (95% CI, 0.927–0.989), and glands 0.905 (95% CI, 0.886–0.921). Furthermore, body part 2D ensemble model reached the highest Dice scores for all labels: arms 0.952 (95% CI, 0.937–0.965), head + neck 0.965 (95% CI, 0.953–0.976), legs 0.978 (95% CI, 0.968–0.988), and torso 0.99 (95% CI, 0.988–0.991). The overall average Dice across body parts (2D = 0.971, 3D = 0.969, P = ns) and body regions (2D = 0.935, 3D = 0.955, P < 0.001) ensemble models indicates stable performance across all classes. Conclusions The presented approach facilitates efficient and automated extraction of BCA parameters from T2-weighted MRI sequences, providing precise and detailed body composition information across various regions and body parts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
北过居庸完成签到,获得积分10
1秒前
1秒前
2秒前
zzs发布了新的文献求助50
2秒前
小鸟发布了新的文献求助30
2秒前
3秒前
3秒前
微笑的寒梦完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
LIU完成签到,获得积分10
5秒前
6秒前
笨笨伟泽完成签到,获得积分10
6秒前
拾柒完成签到,获得积分10
6秒前
科研通AI5应助fj采纳,获得10
7秒前
不如无言完成签到,获得积分10
7秒前
qzdy发布了新的文献求助10
7秒前
8秒前
聪明的鹤完成签到,获得积分10
8秒前
天天快乐应助zwk采纳,获得10
8秒前
9秒前
10秒前
孺子牛完成签到,获得积分20
10秒前
11秒前
ccc发布了新的文献求助10
11秒前
春野花枝完成签到,获得积分10
12秒前
wang发布了新的文献求助10
12秒前
桐桐应助dxx采纳,获得10
13秒前
arrow发布了新的文献求助10
13秒前
14秒前
Look完成签到,获得积分10
14秒前
不想干活应助英勇语蓉采纳,获得10
15秒前
追尾的猫发布了新的文献求助10
16秒前
LI完成签到,获得积分10
16秒前
16秒前
17秒前
Esther完成签到,获得积分10
17秒前
南波万完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4646041
求助须知:如何正确求助?哪些是违规求助? 4036094
关于积分的说明 12483304
捐赠科研通 3725064
什么是DOI,文献DOI怎么找? 2056077
邀请新用户注册赠送积分活动 1086965
科研通“疑难数据库(出版商)”最低求助积分说明 968435