A rapid identification technique for rice adulteration based on improved YOLOV8 model

计算机科学 鉴定(生物学) 人工智能 钥匙(锁) 模式识别(心理学) 特征(语言学) 数据挖掘 基础(线性代数) 代表(政治) 卷积神经网络 机器学习 数学 语言学 哲学 植物 几何学 计算机安全 政治 政治学 法学 生物
作者
Yuan Zhang,Xiao Xing,Lei Zhu,X. Allen Li,Ning Wang,Yanping Du,Rui Han
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9e18
摘要

Abstract Rice classification and quality testing are essential to ensure its safety and quality and are effective in reducing rice-related food economy losses.Currently, incidents of rice adulteration have been repeatedly reported.For this reason, this paper optimises and proposes the lightweight and efficient Faster-YOLO algorithm on the basis of YOLOv8n algorithm, which is more suitable for the task of rice adulteration classification and recognition. Firstly, this paper introduces the grouped convolutional hybrid attention mechanism (GCHAM) combining channel information and spatial information, which is embedded in the last layer of the backbone network to enhance the model feature representation capability by focusing on the key information in order to suppress the noise. Secondly, the C2F module in the backbone part adopts the design of combining Faster and C2F to enhance the feature fusion capability and reduce the weight of the model, thus reducing the number of parameters and FLOPs.Finally, the collected data are augmented with multiple aspects to simulate different environments, and compared with multiple attention mechanisms and deep learning models. The experimental results show that the proposed method in this paper is superior in classification and recognition performance, with recognition accuracy of 93.4%, precision of 93.4%, recall of 93.6%, and F1 score of 93.5%. It proves that Faster-YOLO improves the detection and recognition ability while reducing the weight of the model, which provides a strong basis for the rapid identification of rice adulteration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助哥谭小怪兽采纳,获得30
刚刚
1秒前
SciGPT应助绿波电龙采纳,获得10
2秒前
sssane发布了新的文献求助100
2秒前
橙子完成签到 ,获得积分10
3秒前
5秒前
小勾发布了新的文献求助10
6秒前
cdercder应助俭朴仇血采纳,获得10
7秒前
kaxif完成签到,获得积分10
7秒前
第二菜完成签到,获得积分10
9秒前
Xin完成签到,获得积分10
9秒前
10秒前
你才是小哭包完成签到 ,获得积分10
11秒前
kingwhitewing完成签到,获得积分10
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
卡卡西应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
12秒前
脑洞疼应助科研通管家采纳,获得10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
科研通AI5应助yami采纳,获得10
12秒前
华仔应助专注乐巧采纳,获得10
13秒前
小马甲应助小勾采纳,获得10
13秒前
nnnnnn发布了新的文献求助10
14秒前
15秒前
爱笑灵竹发布了新的文献求助10
17秒前
RX信完成签到 ,获得积分10
17秒前
妙妙脆角发布了新的文献求助10
19秒前
19秒前
20秒前
22秒前
22秒前
1111完成签到 ,获得积分10
22秒前
23秒前
jj发布了新的文献求助10
24秒前
25秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801382
求助须知:如何正确求助?哪些是违规求助? 3347052
关于积分的说明 10331668
捐赠科研通 3063333
什么是DOI,文献DOI怎么找? 1681539
邀请新用户注册赠送积分活动 807616
科研通“疑难数据库(出版商)”最低求助积分说明 763810