Diff-Retinex++: Retinex-Driven Reinforced Diffusion Model for Low-Light Image Enhancement

颜色恒定性 人工智能 图像增强 计算机视觉 计算机科学 扩散 图像(数学) 物理 热力学
作者
Xunpeng Yi,Han Xu,Hao Zhang,Linfeng Tang,Jiayi Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:9
标识
DOI:10.1109/tpami.2025.3563612
摘要

This paper proposes a Retinex-driven reinforced diffusion model for low-light image enhancement, termed Diff-Retinex++, to address various degradations caused by low light. Our main approach integrates the diffusion model with Retinex-driven restoration to achieve physically-constrained generative enhancement, making it a pioneering effort. To be detailed, Diff-Retinex++ consists of two-stage view modules, including the Denoising Diffusion Model (DDM), and the Retinex-Driven Mixture of Experts Model (RMoE). First, DDM treats low-light image enhancement as one type of image generation task, benefiting from the powerful generation ability of diffusion model to handle the enhancement. Second, we design the Retinex theory into the plug-and-play supervision attention module. It leverages the latent features in the backbone and knowledge distillation to learn Retinex rules, and further regulates these latent features through the attention mechanism. In this way, it couples the relationship between Retinex decomposition and image enhancement in a new view, achieving dual improvement. In addition, the Low-Light Mixture of Experts preserves the vividness of the diffusion model and fidelity of the Retinex-driven restoration to the greatest extent. Ultimately, the iteration of DDM and RMoE achieves the goal of Retinex-driven reinforced diffusion model. Extensive experiments conducted on real-world low-light datasets qualitatively and quantitatively demonstrate the effectiveness, superiority, and generalization of the proposed method. The code will be available at https://github.com/XunpengYi/Diff-Retinex-Plus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
guigui发布了新的文献求助10
3秒前
汉堡包应助怕孤独的语兰采纳,获得10
3秒前
李点点完成签到,获得积分10
4秒前
4秒前
WangJ1018发布了新的文献求助10
7秒前
听书人发布了新的文献求助10
7秒前
充电宝应助牧鸣凤采纳,获得10
9秒前
guigui完成签到,获得积分10
9秒前
10秒前
11秒前
庾磬完成签到,获得积分10
11秒前
大侠发布了新的文献求助10
12秒前
寒冷芝完成签到 ,获得积分10
12秒前
14秒前
小冉完成签到,获得积分10
14秒前
FashionBoy应助thor采纳,获得10
14秒前
落后的语蝶完成签到,获得积分10
15秒前
15秒前
15秒前
一颗红葡萄完成签到 ,获得积分10
16秒前
16秒前
BLESSING发布了新的文献求助10
19秒前
记忆完成签到,获得积分10
19秒前
Ava应助亦雪采纳,获得10
21秒前
可爱的函函应助暮潇牧笑采纳,获得10
21秒前
22秒前
22秒前
苽峰发布了新的文献求助30
22秒前
听书人完成签到,获得积分10
23秒前
领导范儿应助大侠采纳,获得10
23秒前
脑洞疼应助稳重乐巧采纳,获得30
23秒前
量子星尘发布了新的文献求助10
23秒前
lwwlccc完成签到,获得积分10
24秒前
25秒前
26秒前
Owen应助苽峰采纳,获得10
26秒前
粑粑人儿发布了新的文献求助10
27秒前
Tanya完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5011767
求助须知:如何正确求助?哪些是违规求助? 4253087
关于积分的说明 13253021
捐赠科研通 4055784
什么是DOI,文献DOI怎么找? 2218391
邀请新用户注册赠送积分活动 1227979
关于科研通互助平台的介绍 1150238