Diff-Retinex++: Retinex-Driven Reinforced Diffusion Model for Low-Light Image Enhancement

颜色恒定性 人工智能 图像增强 计算机视觉 计算机科学 扩散 图像(数学) 物理 热力学
作者
Xunpeng Yi,Han Xu,Hao Zhang,Linfeng Tang,Jiayi Ma
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (8): 6823-6841 被引量:20
标识
DOI:10.1109/tpami.2025.3563612
摘要

This paper proposes a Retinex-driven reinforced diffusion model for low-light image enhancement, termed Diff-Retinex++, to address various degradations caused by low light. Our main approach integrates the diffusion model with Retinex-driven restoration to achieve physically-inspired generative enhancement, making it a pioneering effort. To be detailed, Diff-Retinex++ consists of two-stage view modules, including the Denoising Diffusion Model (DDM), and the Retinex-Driven Mixture of Experts Model (RMoE). First, DDM treats low-light image enhancement as one type of image generation task, benefiting from the powerful generation ability of diffusion model to handle the enhancement. Second, we design the Retinex theory into the plug-and-play supervision attention module. It leverages the latent features in the backbone and knowledge distillation to learn Retinex rules, and further regulates these latent features through the attention mechanism. In this way, it couples the relationship between Retinex decomposition and image enhancement in a new view, achieving dual improvement. In addition, the Low-Light Mixture of Experts preserves the vividness of the diffusion model and fidelity of the Retinex-driven restoration to the greatest extent. Ultimately, the iteration of DDM and RMoE achieves the goal of Retinex-driven reinforced diffusion model. Extensive experiments conducted on real-world low-light datasets qualitatively and quantitatively demonstrate the effectiveness, superiority, and generalization of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助李树玉采纳,获得10
刚刚
充电宝应助求助人员采纳,获得30
1秒前
1秒前
浮游应助求助人员采纳,获得30
1秒前
桐桐应助求助人员采纳,获得10
1秒前
星辰大海应助求助人员采纳,获得10
1秒前
科研通AI6应助求助人员采纳,获得20
1秒前
浮游应助求助人员采纳,获得20
1秒前
共享精神应助求助人员采纳,获得10
1秒前
充电宝应助求助人员采纳,获得10
1秒前
wanci应助求助人员采纳,获得10
1秒前
酷波er应助求助人员采纳,获得10
1秒前
现在毕业完成签到,获得积分10
1秒前
Ac完成签到,获得积分10
1秒前
2秒前
hezhe完成签到,获得积分10
3秒前
3秒前
甜甜雨莲发布了新的文献求助10
4秒前
7秒前
7秒前
7秒前
丘比特应助chan采纳,获得10
8秒前
自信的汉堡完成签到,获得积分10
8秒前
Hustler完成签到,获得积分10
9秒前
Owen应助hopen采纳,获得10
9秒前
我说我话完成签到 ,获得积分10
10秒前
张张发布了新的文献求助10
10秒前
食野之苹发布了新的文献求助10
11秒前
科研通AI6应助兴奋的雪糕采纳,获得10
11秒前
英姑应助gouqi采纳,获得20
12秒前
小滨发布了新的文献求助10
13秒前
13秒前
13秒前
华仔应助zkyyinf_zero采纳,获得10
13秒前
科研通AI6应助刁刁采纳,获得10
14秒前
14秒前
浮游应助快乐的钢笔采纳,获得10
16秒前
科目三应助阔达以南采纳,获得200
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5566392
求助须知:如何正确求助?哪些是违规求助? 4651181
关于积分的说明 14695302
捐赠科研通 4593195
什么是DOI,文献DOI怎么找? 2520029
邀请新用户注册赠送积分活动 1492366
关于科研通互助平台的介绍 1463472