StRUL: stacking-based RUL prediction for bearings with unknown working conditions and failure modes

堆积 模式(计算机接口) 失效模式及影响分析 可靠性工程 计算机科学 材料科学 工程类 物理 核磁共振 操作系统
作者
Qi Liu,Wenjing Liu,J. Piao,Yuhong Fan,Biao Wang,Ergude Bao,Jiqiang Liu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (5): 056126-056126
标识
DOI:10.1088/1361-6501/add044
摘要

Abstract Bearings are critical components in equipment, and it is important to predict their remaining useful life (RUL) so that early intervention can be applied before their failure. A challenge in predicting the RUL is that the target bearing’s working condition and/or failure mode is usually unknown. Although various methods have been proposed to address this challenge, few of them consider two practical issues. (1) When various datasets are available and used to train a single deep learning model, training datasets related to bearings of quite different statuses can affect prediction accuracy. (2) Transfer learning can be used to alleviate issue (1), but this requires data collection from the target bearing and fine-tuning, and the additional time required by this process may delay RUL prediction and intervention. To address these issues in industrial practice, we propose stacking-based RUL (StRUL) prediction for bearings of unknown working conditions and failure modes. StRUL is based on the stacking of transformers with novel designs: a modified amplitude spectrum comparison approach, a similarity-based attention mechanism, and a distribution-based attention mechanism. First, StRUL pre-trains each transformer with a specific dataset so that each transformer can generate an encoding for the input data from the target bearing. Second, it applies a modified amplitude spectrum comparison approach to calculate the similarity value between the input data and each transformer’s training dataset. StRUL then uses a similarity-based attention mechanism to prioritize transformer encodings with relatively large similarity values in prediction. Third, it includes an additional transformer trained with all the training datasets and uses a distribution-based attention mechanism to determine how much the additional transformer contributes to the predicted RUL when the distribution of the similarity values is nearly uniform. Case studies performed using the XJTU-SY and PRONOSTIA data, each containing more than 10 datasets, demonstrate that StRUL can efficiently use all the training datasets without additional data collection or fine-tuning to achieve high prediction accuracy and speed useful for practical deployment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
4秒前
5秒前
7秒前
7秒前
7秒前
7秒前
shhoing应助xiaobai123456采纳,获得10
8秒前
小匹夫发布了新的文献求助10
8秒前
伊伊发布了新的文献求助10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
Shellbeaze发布了新的文献求助10
9秒前
情怀应助科研通管家采纳,获得10
10秒前
只争朝夕应助科研通管家采纳,获得10
10秒前
sleep应助科研通管家采纳,获得10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
丘比特应助合适的小海豚采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
东方元语应助科研通管家采纳,获得20
10秒前
lanlan发布了新的文献求助10
10秒前
ding应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
yznfly应助科研通管家采纳,获得80
11秒前
东方元语应助科研通管家采纳,获得20
11秒前
sleep应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
12秒前
乐乐应助徐小采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
磐xst发布了新的文献求助10
14秒前
15秒前
忧伤的飞鸟完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532433
求助须知:如何正确求助?哪些是违规求助? 4621191
关于积分的说明 14577130
捐赠科研通 4561052
什么是DOI,文献DOI怎么找? 2499136
邀请新用户注册赠送积分活动 1479070
关于科研通互助平台的介绍 1450318