离域电子
Atom(片上系统)
催化作用
四苯基卟啉
法拉第效率
协调数
材料科学
化学物理
镍
电子
碳纤维
航程(航空)
协调球
纳米技术
化学
电子壳层
电子离域
结晶学
离子
电化学
电极
光化学
物理化学
物理
晶体结构
冶金
卟啉
计算机科学
有机化学
复合材料
嵌入式系统
量子力学
电离
复合数
作者
Lingxiao Wang,Sheng‐Quan Fu,Ran Shi,Yafei Zhao,Huang Zhou,Hao Huang,Zhen-Qiang Yu,Yuen Wu
标识
DOI:10.1002/anie.202506663
摘要
While long‐range charge delocalization beyond the second coordination shell critically influence the geometric and electronic properties of single‐atom active sites, their systematic modulation to enhance multi‐electron catalytic processes remains largely unexplored. Here, we demonstrate a site‐specific strategy to engineer the nickel tetraphenylporphyrin (NiTPP) precursors by selectively cleaving carbon‐carbon single bonds at the β‐carbon sites. This approach preserves the Ni‐centered first and second coordination shells while systematically removing peripheral π‐electron delocalization in extended coordination environments. The resultant Ni‐N4 catalyst exhibits a 29‐fold enhancement in CO faradaic efficiency at ‐1.4 V vs RHE compared to original counterparts. Notably, it maintains 98.3% CO selectivity at industrial‐grade current densities up to 500 mA cm‐2 in flow cell. Combined experimental and theoretical analyses reveal that the electron‐enriched Ni sites, arising from precisely regulated charge delocalization in higher coordination shells, facilitate stabilization of the critical *COOH intermediate. Our findings establish a paradigm for advanced catalyst design through deliberate engineering of higher coordination shells.
科研通智能强力驱动
Strongly Powered by AbleSci AI