Multivariate analysis of CHO cell line development data to identify cell line selection criteria

多元统计 直线(几何图形) 选择(遗传算法) 多元分析 计算机科学 人工智能 数学 机器学习 几何学
作者
Devi Sietaram,Pavlos Kotidis,Ruth C. Rowland‐Jones,Gary Finka,Alexei A. Lapkin
标识
DOI:10.26434/chemrxiv-2025-dvjpd-v2
摘要

This paper addresses the challenges in cell line development (CLD), the lengthy and ambiguous clone screening in upstream biopharmaceutical production. Typically, only a small subset of the later stages of CLD data is used for manually selecting lead clones. Addressing this issue, we introduce a multivariate data analysis (MVDA) as an automated, data-driven approach that integrates CLD data of all scales and stages, to identify criteria for earlier, more accurate, and efficient selection of high-performing cell lines, as well as providing sophisticated knowledge on the metabolic patterns prevalent in productive, stable cell lines. CLD is a multi-scale screening process from micro-scale single-cell cloning (SSC) and well plates, to minibioreactor (MBR) production runs for screening cell line stability. The MVDA identified which early micro-scale CLD stages and what criteria provide predictive potential for disregarding more cell lines earlier on in CLD, using four historical CLD data of hundreds of CHO clonal cell lines producing three unique target mAbs. Using decision trees, we derived that the SSC and the 6-well scale-up are the most predictive early-CLD stages for cell line performance in the production runs, with generalised thresholds of VCC_(6-well)>38% and q_(p,Beacon)<40% for safely deselecting poor-performing cell lines across various mAb targets. The MVDA also revealed the metabolic patterns typical in highly productive, stable cell lines, which were elevated oxidative metabolism, modified glutamine and ammonium metabolism, and less lactate-induced cell death. Including these metabolic parameters as selection criteria would be novel, demonstrating the enhanced information retrieval the MVDA method offers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cheng发布了新的文献求助10
2秒前
爱吃瑞士卷完成签到 ,获得积分10
2秒前
tf发布了新的文献求助10
2秒前
李爱国应助李浩然采纳,获得10
3秒前
3秒前
打打应助奥特曼采纳,获得10
3秒前
wanci应助龙华之士采纳,获得10
3秒前
bilin完成签到,获得积分10
3秒前
香蕉诗蕊应助YY采纳,获得10
4秒前
4秒前
zgrmws应助呆萌的小海豚采纳,获得50
4秒前
4秒前
5秒前
淡淡朝阳完成签到,获得积分10
5秒前
mslln完成签到,获得积分10
6秒前
拒绝者发布了新的文献求助10
6秒前
7秒前
7秒前
Sweetx发布了新的文献求助10
7秒前
7秒前
7秒前
Lucky发布了新的文献求助10
7秒前
8秒前
科研通AI6应助一只小羊采纳,获得10
8秒前
9秒前
阿超完成签到 ,获得积分10
9秒前
guogangyouming完成签到,获得积分10
9秒前
milalala发布了新的文献求助10
9秒前
小二郎应助刘刘采纳,获得10
10秒前
10秒前
青梧衔云发布了新的文献求助10
10秒前
李健的小迷弟应助tanglu采纳,获得10
10秒前
qiukeyingying完成签到,获得积分10
10秒前
害羞笑白发布了新的文献求助10
10秒前
打打应助背后寒烟采纳,获得10
10秒前
10秒前
Islet发布了新的文献求助50
11秒前
11秒前
SciGPT应助godsky采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646913
求助须知:如何正确求助?哪些是违规求助? 4772581
关于积分的说明 15036996
捐赠科研通 4805669
什么是DOI,文献DOI怎么找? 2569917
邀请新用户注册赠送积分活动 1526811
关于科研通互助平台的介绍 1485943