已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Algorithm for One-Dimensional Wave Spectrum Retrieval from Gaofen-3 by Deep Learning

光谱(功能分析) 计算机科学 算法 电磁频谱 人工智能 遥感 气象学 地质学 物理 光学 量子力学
作者
Shaijie Leng,Weizeng Shao,Ferdinando Nunziata,Maurizio Migliaccio
出处
期刊:Journal of Atmospheric and Oceanic Technology [American Meteorological Society]
卷期号:42 (6): 621-636 被引量:2
标识
DOI:10.1175/jtech-d-24-0089.1
摘要

Abstract The goal of the present work was to confirm the applicability of one-dimensional wave spectrum retrieval from Gaofen-3 ( GF-3 ) synthetic aperture radar (SAR) using deep learning techniques. A total of 11 300 images were acquired in wave (WV) mode, and 1000 images have been employed in quad-polarized stripmap (QPS) mode during the period from 2017 to 2022. To simulate wave spectra that were collocated with GF-3 images, a third-generation numerical model, WAVEWATCH-III (WW3), was employed. Validation of significant wave heights (SWHs) hindcasted by WW3 against the operational products from Haiyang-2 (HY-2) altimeters during March–June 2019 in the China Seas yielded a 0.44-m root-mean-square error (RMSE), a correlation ( r ) of 0.91, and a 0.16 scatter index (SI). The basic deep learning method employed for SAR wave spectrum retrieval was based on three deep learning methods [multilayer perceptron (MLP), residual networks (ResNet), and convolutional neural networks (CNNs)], which were trained on the 11 300 WV images. SAR intensity spectrum in copolarization [vertical–vertical (VV) and horizontal–horizontal (HH)] and modulation transfer functions (MTFs) corresponding to three modulations (i.e., hydrodynamic, tilt, and velocity bunching) were treated as inputs in the training procedure. An MLP-based algorithm has the best inversion results. The retrievals by the MLP were compared with the collocated wave spectra from the Surface Wave Investigation and Monitoring (SWIM). Statistical analysis yielded a correlation coefficient (Cor) and a squared error (Err) of the wave spectrum of 0.79 and 1.69, respectively, and the RMSE of SWH was 0.35 m, with a 0.98 r value and 0.13 SI. Similarly, the RMSE of SAR-derived SWHs from 700 QPS images was 0.41 m, with a 0.95 r and a 0.28 SI validated against the altimeters on board HY-2. As validated against National Data Buoy Center (NDBC) buoys, the RMSE was 1.14 s, with an r of 0.23 and an SI of 0.16. Collectively, the proposed MLP-based algorithm demonstrated good performance in retrieving the one-dimensional wave spectrum from GF-3 SAR images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
KIKI完成签到 ,获得积分10
3秒前
wkwwkwkwk完成签到 ,获得积分10
4秒前
6秒前
9秒前
16秒前
Jessica完成签到,获得积分0
20秒前
21秒前
布隆的保龄球完成签到,获得积分10
24秒前
25秒前
Carl发布了新的文献求助10
31秒前
满怀信心完成签到 ,获得积分10
34秒前
Sunny完成签到 ,获得积分10
34秒前
layne完成签到 ,获得积分20
34秒前
怡然立轩完成签到 ,获得积分10
35秒前
悦耳冬萱完成签到 ,获得积分10
36秒前
FashionBoy应助科研通管家采纳,获得10
41秒前
今后应助科研通管家采纳,获得10
41秒前
6666应助科研通管家采纳,获得10
41秒前
42秒前
AMOZON完成签到,获得积分10
45秒前
科研通AI6应助精明水壶采纳,获得10
45秒前
科研通AI6应助冷酷傲易采纳,获得10
45秒前
小新完成签到 ,获得积分10
45秒前
49秒前
赘婿应助明天采纳,获得10
50秒前
51秒前
xuxu完成签到 ,获得积分10
54秒前
55秒前
Cast_Lappland发布了新的文献求助10
56秒前
DiJia完成签到 ,获得积分10
56秒前
57秒前
Carl发布了新的文献求助10
58秒前
爱撒娇的妙竹完成签到,获得积分10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
Criminology34给淡定傲儿的求助进行了留言
1分钟前
合适映雁完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334595
求助须知:如何正确求助?哪些是违规求助? 4472687
关于积分的说明 13920633
捐赠科研通 4366656
什么是DOI,文献DOI怎么找? 2399165
邀请新用户注册赠送积分活动 1392339
关于科研通互助平台的介绍 1363167