Hybrid Transformer–Convolutional Neural Network Approach for Non-Intrusive Load Analysis in Industrial Processes

卷积神经网络 变压器 计算机科学 人工智能 工程类 电气工程 电压
作者
Gengsheng He,Yu Huang,Ying Zhang,Yuanzhe Zhu,Yuan Bao Leng,Nan Shang,Jincan Zeng,Zengxin Pu
出处
期刊:Energies [Multidisciplinary Digital Publishing Institute]
卷期号:18 (10): 2464-2464
标识
DOI:10.3390/en18102464
摘要

With global efforts intensifying towards achieving carbon neutrality, accurately monitoring and managing energy consumption in industrial sectors has become critical. Non-Intrusive Load Monitoring (NILM) technology presents a cost-effective solution for industrial energy management by decomposing aggregate power data into individual device-level information without extensive hardware requirements. However, existing NILM methods primarily tailored for residential applications struggle to capture complex inter-device correlations and production-dependent load dynamics prevalent in industrial environments, such as cement plants. This paper proposes a novel sequence-to-sequence-based non-intrusive load disaggregation method that integrates Convolutional Neural Networks (CNN) and Transformer architectures, specifically addressing the challenges of multi-device load disaggregation in industrial settings. An innovative time–application attention mechanism was integrated to effectively model long-term temporal dependencies and the collaborative operational relationships between industrial devices. Additionally, global constraints—including consistency, smoothness, and sparsity—were introduced into the loss function to ensure power conservation, reduce noise, and achieve precise zero-power predictions for inactive equipment. The proposed method was validated on real-world power consumption data collected from a cement production facility. Experimental results indicate that the proposed method significantly outperforms traditional NILM approaches with average improvements of 4.98%, 3.70%, and 4.38% in terms of accuracy, recall, and F1-score, respectively. These findings underscore its superior robustness in noisy conditions and under device fault conditions, further affirming its applicability and potential for deployment in industrial settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的课完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
诸葛小哥哥完成签到 ,获得积分0
4秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
Andy完成签到 ,获得积分10
8秒前
Orange应助稳稳采纳,获得10
8秒前
汉堡包应助过过过采纳,获得10
11秒前
12秒前
sfaaeaadefef完成签到,获得积分10
13秒前
Mp4完成签到 ,获得积分10
13秒前
14秒前
阳光过客发布了新的文献求助10
15秒前
黑摄会阿Fay完成签到,获得积分10
15秒前
16秒前
16秒前
羊青丝发布了新的文献求助10
19秒前
20秒前
科研通AI6应助WMR采纳,获得10
20秒前
511应助天真的铭采纳,获得10
20秒前
青鸟发布了新的文献求助10
20秒前
nayi发布了新的文献求助10
21秒前
guanlan完成签到,获得积分20
21秒前
擦书完成签到,获得积分10
22秒前
张欣冉完成签到 ,获得积分10
22秒前
22秒前
23秒前
量子星尘发布了新的文献求助30
24秒前
擦书发布了新的文献求助10
25秒前
25秒前
干果发布了新的文献求助10
26秒前
LSQ完成签到,获得积分20
27秒前
27秒前
fan发布了新的文献求助10
27秒前
28秒前
倩青春发布了新的文献求助10
30秒前
海阔云高完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4284500
求助须知:如何正确求助?哪些是违规求助? 3812052
关于积分的说明 11941096
捐赠科研通 3458628
什么是DOI,文献DOI怎么找? 1896754
邀请新用户注册赠送积分活动 945452
科研通“疑难数据库(出版商)”最低求助积分说明 849221