已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generative AI in construction risk management: a bibliometric analysis of the associated benefits and risks

生成语法 风险管理 风险分析(工程) 业务 计算机科学 人工智能 财务
作者
Mohamed A. Mohamed,M.K.S. Al-Mhdawi,Udechukwu Ojiako,Nicholas Dacre,Abroon Qazi,Farzad Pour Rahimian
标识
DOI:10.1108/uss-11-2024-0069
摘要

Purpose The construction industry is under increasing pressure to improve risk management due to the complexity and uncertainty inherent in its projects. Generative artificial intelligence (GenAI) has emerged as a promising tool to address these challenges; however, there remains a limited understanding of its benefits and risks in construction risk management (CRM). This study aims to conduct a bibliometric analysis of current research on GenAI in CRM, exploring publication trends, citations, keywords, intellectual linkages, key contributors and methodologies. Design/methodology/approach A review of Scopus publications from 2014 to 2024 identifies key categories of GenAI’s benefits and risks for CRM. Using VOSViewer, visual maps illustrate research trends, collaboration networks and citation patterns. Findings The findings reveal a notable increase in research interest in GenAI for CRM, with benefits classified into technical, operational, technological and integration categories. Risks are grouped into nine areas, including social, security, data and performance. Research limitations/implications Despite its comprehensive scope, this research focuses exclusively on peer-reviewed studies published between 2014 and 2024, potentially excluding relevant studies from outside this period or non-peer-reviewed sources. Additionally, the bibliometric analysis relied on a specific set of keywords, which may have excluded studies using alternative terminology for GenAI or categorised under related fields. Practical implications The categorisation of GenAI risks in CRM provides a foundation for critical risk management processes, such as risk analysis, evaluation and response planning. Additionally, understanding the identified benefits, such as improved risk prediction, alongside associated risks, such as ethical and data security issues, enables practitioners to balance innovation with caution, ensuring effective and responsible adoption of GenAI technologies. Originality/value This research offers a novel bibliometric analysis of the benefits and risks of GenAI in CRM, providing a comprehensive understanding of the field’s evolution and global research landscape. Through the categorisation of the benefits and risks of GenAI in CRM, the study lays the groundwork for developing comprehensive risk management models. Additionally, it identifies key methodologies and research trends, enabling academics and practitioners to refine approaches and bridge research gaps. This work not only enhances theoretical insights but also provides actionable strategies for integrating GenAI into CRM practices effectively and responsibly.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助文艺馒头采纳,获得10
刚刚
刚刚
无限的含蕾完成签到,获得积分10
3秒前
zjb发布了新的文献求助10
5秒前
1只白日梦完成签到,获得积分10
5秒前
科目三应助一枚巧克力采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
大树十字坡完成签到,获得积分10
8秒前
wanci应助zjb采纳,获得10
9秒前
情怀应助whisper采纳,获得30
10秒前
idiom完成签到 ,获得积分10
11秒前
13秒前
14秒前
乐乐应助布谷采纳,获得10
14秒前
15秒前
Aquarius完成签到,获得积分10
15秒前
所所应助金戈采纳,获得10
15秒前
Werido完成签到 ,获得积分10
16秒前
16秒前
16秒前
xxxxyyyy1完成签到 ,获得积分10
17秒前
倔驴发布了新的文献求助10
17秒前
Anyemzl发布了新的文献求助10
19秒前
taster发布了新的文献求助30
20秒前
cc完成签到 ,获得积分10
21秒前
zjb发布了新的文献求助10
22秒前
正直的醉波应助金戈采纳,获得10
23秒前
秋作完成签到 ,获得积分10
25秒前
26秒前
orixero应助zjb采纳,获得10
26秒前
乏味完成签到,获得积分10
27秒前
武装大脑完成签到,获得积分10
30秒前
科研小白兔应助ZYB143采纳,获得10
30秒前
Accio发布了新的文献求助10
32秒前
33秒前
wanci应助格物要致知采纳,获得30
33秒前
34秒前
狗狗完成签到 ,获得积分10
36秒前
37秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4241925
求助须知:如何正确求助?哪些是违规求助? 3775426
关于积分的说明 11855781
捐赠科研通 3430354
什么是DOI,文献DOI怎么找? 1882674
邀请新用户注册赠送积分活动 934706
科研通“疑难数据库(出版商)”最低求助积分说明 841156