亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of Tumor Location on Predicting Early-Stage Breast Cancer Patient Survivability Using Explainable Machine Learning Models

接收机工作特性 人工智能 机器学习 阿达布思 乳腺癌 逻辑回归 随机森林 梯度升压 决策树 计算机科学 分类器(UML) 马修斯相关系数 生存能力 预测建模 支持向量机 医学 内科学 癌症 计算机网络
作者
Nader Abdalnabi,Abdulmateen Adebiyi,Ahmad Alhonainy,Kushal Naha,Christos Papageorgiou,Praveen Rao
出处
期刊:JCO clinical cancer informatics [American Society of Clinical Oncology]
卷期号:9 (9): e2400178-e2400178 被引量:1
标识
DOI:10.1200/cci-24-00178
摘要

PURPOSE This study aims to investigate the impact of tumor quadrant location on the 5-year early-stage breast cancer survivability prediction using explainable machine learning (ML) models. By integrating these predictive models with Shapley Additive Explanations (SHAP), feature importance, and coefficient effect size, we aim to provide insights into the significant factors influencing patient outcomes. METHODS Data from 401 early-stage patients with breast cancer at the University of Missouri's Ellis Fischel Cancer Center were used, encompassing 20 variables related to demographics, tumor characteristics, and therapeutics. Six ML models, namely, Xtreme Gradient Boosting, Random Forest classifier, Logistic Regression, Decision Tree classifier (DT), Support Vector Machine classifier, and AdaBoost (ADB), were trained and evaluated using various performance metrics, including accuracy, sensitivity, specificity, F1-score, area under the receiver operating characteristic curve (AUC-ROC), and area under the precision-recall curve (AUC-PR). Feature importance, coefficient effect size, and SHAP values were used to interpret and visualize the importance of different features, particularly focusing on tumor quadrant variables. RESULTS The extreme gradient boosting model outperformed other models, achieving an AUC-ROC score of 0.98 and an AUC-PR score of 0.97. The analysis revealed that tumor quadrant variables, especially the upper outer and miscellaneous or overlapping sites, were among the top predictive features for breast cancer survivability. SHAP analysis further highlighted the significance of these tumor locations in influencing survival outcomes. CONCLUSION This study demonstrates the efficacy of explainable ML models in predicting 5-year early-stage breast cancer survivability and identifies tumor quadrant location as an independent prognostic factor. The use of SHAP values provides a clear interpretation of the model's predictions, offering valuable insights for clinicians to refine treatment protocols and improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_ZGRqKn完成签到,获得积分10
3秒前
wanwan524完成签到 ,获得积分10
16秒前
CodeCraft应助phd采纳,获得10
23秒前
充电宝应助phd采纳,获得10
31秒前
38秒前
sailingluwl完成签到,获得积分10
41秒前
阿泽发布了新的文献求助10
42秒前
大个应助phd采纳,获得10
46秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
1分钟前
Una完成签到,获得积分10
1分钟前
矮小的向雪完成签到 ,获得积分10
1分钟前
phd发布了新的文献求助10
1分钟前
花开富贵完成签到 ,获得积分10
1分钟前
2分钟前
lei发布了新的文献求助10
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
rose发布了新的文献求助20
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
lsl应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
卷卷完成签到 ,获得积分10
3分钟前
kuoping完成签到,获得积分0
3分钟前
3分钟前
小b亮完成签到 ,获得积分10
4分钟前
Echo完成签到,获得积分10
4分钟前
奇奇怪怪完成签到,获得积分10
4分钟前
fanhuaxuejin完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644764
求助须知:如何正确求助?哪些是违规求助? 4765318
关于积分的说明 15025565
捐赠科研通 4803089
什么是DOI,文献DOI怎么找? 2567925
邀请新用户注册赠送积分活动 1525479
关于科研通互助平台的介绍 1485004