DenseFormer-MoE: A Dense Transformer Foundation Model With Mixture of Experts for Multi-Task Brain Image Analysis

变压器 计算机科学 人工智能 基础(证据) 图像(数学) 计算机视觉 模式识别(心理学) 工程类 电气工程 电压 考古 历史
作者
Rizhi Ding,Hui Lü,Manhua Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (10): 4037-4048 被引量:4
标识
DOI:10.1109/tmi.2025.3551514
摘要

Deep learning models have been widely investigated for computing and analyzing brain images across various downstream tasks such as disease diagnosis and age regression. Most existing models are tailored for specific tasks and diseases, posing a challenge in developing a foundation model for diverse tasks. This paper proposes a Dense Transformer Foundation Model with Mixture of Experts (DenseFormer-MoE), which integrates dense convolutional network, Vision Transformer and Mixture of Experts (MoE) to progressively learn and consolidate local and global features from T1-weighted magnetic resonance images (sMRI) for multiple tasks including diagnosing multiple brain diseases and predicting brain age. First, a foundation model is built by combining the vision Transformer with Densenet, which are pre-trained with Masked Autoencoder and self-supervised learning to enhance the generalization of feature representations. Then, to mitigate optimization conflicts in multi-task learning, MoE is designed to dynamically select the most appropriate experts for each task. Finally, our method is evaluated on multiple renowned brain imaging datasets including UK Biobank (UKB), Alzheimer's Disease Neuroimaging Initiative (ADNI), and Parkinson's Progression Markers Initiative (PPMI). Experimental results and comparison demonstrate that our method achieves promising performances for prediction of brain age and diagnosis of brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
核桃应助zhou_nuo采纳,获得10
刚刚
1秒前
orixero应助穆头呼橹橹采纳,获得10
1秒前
冯先森ya完成签到,获得积分10
1秒前
2秒前
Shaw发布了新的文献求助10
2秒前
霸气小懒虫完成签到,获得积分20
3秒前
3秒前
情怀应助呆熊采纳,获得10
3秒前
wanci应助忧郁的白竹采纳,获得10
4秒前
4秒前
4秒前
5秒前
兰真纯洁发布了新的文献求助10
5秒前
5秒前
哲别发布了新的文献求助10
5秒前
jiaming发布了新的文献求助10
5秒前
6秒前
652183758完成签到 ,获得积分10
6秒前
YYCBNU发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
秋秋秋l完成签到,获得积分10
8秒前
sun发布了新的文献求助10
8秒前
zhang完成签到 ,获得积分10
9秒前
华仔应助风中的向卉采纳,获得10
9秒前
9秒前
非理性或完成签到,获得积分10
9秒前
fruchtjelly发布了新的文献求助10
10秒前
orixero应助yaochuan采纳,获得10
10秒前
10秒前
充电宝应助Mono采纳,获得10
11秒前
能干的人发布了新的文献求助10
11秒前
华hua完成签到,获得积分10
11秒前
小学猹发布了新的文献求助10
12秒前
魏白鱼发布了新的文献求助10
12秒前
我是老大应助润润轩轩采纳,获得10
12秒前
非理性或发布了新的文献求助10
12秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206480
求助须知:如何正确求助?哪些是违规求助? 4384909
关于积分的说明 13654925
捐赠科研通 4243191
什么是DOI,文献DOI怎么找? 2327972
邀请新用户注册赠送积分活动 1325674
关于科研通互助平台的介绍 1277765