Development and validation of a predictive model for peripherally inserted central catheter-related thrombosis in breast cancer patients based on artificial neural network: A prospective cohort study

医学 逻辑回归 接收机工作特性 前瞻性队列研究 血栓形成 乳腺癌 外周穿刺中心静脉导管 人工神经网络 队列 导管 癌症 外科 机器学习 内科学 计算机科学
作者
Jianqin Fu,Weifeng Cai,Bangwei Zeng,Lijuan He,Liqun Bao,Zhaodi Lin,Fang Lin,Wenjuan Hu,Linying Lin,Hanying Huang,Suhui Zheng,Liyuan Chen,Wei Zhou,Yanjuan Lin,Fangmeng Fu
出处
期刊:International Journal of Nursing Studies [Elsevier BV]
卷期号:135: 104341-104341 被引量:16
标识
DOI:10.1016/j.ijnurstu.2022.104341
摘要

Peripherally inserted central catheters have been extensively applied in clinical practices. However, they are associated with an increased risk of thrombosis. To improve patient care, it is critical to timely identify patients at risk of developing peripherally inserted central catheter-related thrombosis. Artificial neural networks have been successfully used in many areas of clinical events prediction and affected clinical decisions and practice.To develop and validate a novel clinical model based on artificial neural network for predicting peripherally inserted central catheter-related thrombosis in breast cancer patients who underwent chemotherapy and determine whether it may improve the prediction performance compared with the logistic regression model.A prospective cohort study.A large general hospital in Fujian Province, China.One thousand eight hundred and forty-four breast cancer patients with peripherally inserted central catheters placement for chemotherapy were eligible for the study.The dataset was divided into a training set (N = 1497) and an independent validation set (N = 347). The synthetic minority oversampling technique (SMOTE) was used to handle the effect of imbalance class. Both the artificial neural network and logistic regression models were then developed on the training set with and without SMOTE, respectively. The performance of each model was evaluated on the validation set using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC).Of the 1844 enrolled patients, 256 (13.9%) were diagnosed with peripherally inserted central catheter-related thrombosis. Predictive models were constructed in the training set and assessed in the validation set. Eight factors were selected as input variables to develop the artificial neural network model. Without SMOTE, the artificial neural network model (AUC = 0.725) outperformed the logistic regression model (AUC = 0.670, p = 0.039). SMOTE improved the performance of both two models based on AUC. With the SMOTE sampling, the artificial neural network model performed the best across all evaluated models, the AUC value remained statistically better than that of the logistic regression model (0.742 vs. 0.675, p = 0.004).Artificial neural network model can effectively predict peripherally inserted central catheter-related thrombosis in breast cancer patients receiving chemotherapy. Identifying high-risk groups with peripherally inserted central catheter-related thrombosis can provide close monitoring and an opportune time for intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动漫大师发布了新的文献求助10
1秒前
智慧吗喽完成签到,获得积分10
2秒前
2秒前
xx发布了新的文献求助10
3秒前
sincerely发布了新的文献求助10
4秒前
小蚊子发布了新的文献求助10
4秒前
美丽晓蓝完成签到,获得积分10
5秒前
yuki完成签到,获得积分10
6秒前
8秒前
科研通AI5应助美丽晓蓝采纳,获得10
11秒前
烦恼都走开完成签到,获得积分10
13秒前
cdercder应助水悟子采纳,获得10
15秒前
清秀孤丝发布了新的文献求助10
15秒前
MZ完成签到,获得积分0
15秒前
一个左正蹬完成签到,获得积分10
16秒前
aDou完成签到 ,获得积分10
16秒前
s1kl完成签到,获得积分10
18秒前
嘟嘟豆806完成签到 ,获得积分10
18秒前
含糊的代丝完成签到 ,获得积分10
20秒前
sincerely完成签到,获得积分10
20秒前
细致且入微完成签到,获得积分10
20秒前
22秒前
22秒前
nine2652完成签到 ,获得积分10
22秒前
SQL完成签到 ,获得积分10
25秒前
智勇双全完成签到,获得积分10
26秒前
番茄炒蛋不要番茄le完成签到,获得积分10
27秒前
m赤子心完成签到 ,获得积分10
27秒前
28秒前
骤世界完成签到 ,获得积分10
29秒前
居居侠完成签到 ,获得积分10
29秒前
31秒前
yzxzdm完成签到 ,获得积分10
31秒前
CipherSage应助苗条铅笔采纳,获得10
32秒前
LeungYM完成签到 ,获得积分10
32秒前
高高的从波完成签到,获得积分10
33秒前
CMUSK完成签到,获得积分10
34秒前
HHHH完成签到,获得积分10
34秒前
maclogos发布了新的文献求助10
37秒前
自由的梦露完成签到 ,获得积分10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776082
求助须知:如何正确求助?哪些是违规求助? 3321667
关于积分的说明 10206556
捐赠科研通 3036733
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797459
科研通“疑难数据库(出版商)”最低求助积分说明 757841