再结晶(地质)
材料科学
动态再结晶
电子背散射衍射
晶粒生长
冶金
微观结构
晶界
热加工
地质学
古生物学
作者
Xu Ye,Zhe Suo,Zhonghao Heng,Biao Chen,Q. Wei,Junko Umeda,Katsuyoshi Kondoh,Jianghua Shen
标识
DOI:10.1016/j.jma.2023.01.021
摘要
It has been a common method to improve the mechanical properties of metals by manipulating their microstructures via static recrystallization, i.e., through heat treatment. Therefore, the knowledge of recrystallization and grain growth is critical to the success of the technique. In the present work, by using in-situ high temperature EBSD, the mechanisms that control recrystallization and grain growth of an extruded pure Mg were studied. The experimental results revealed that the grains of priority for dynamic recrystallization exhibit fading competitiveness under static recrystallization. It is also found that grain boundary movement or grain growth is likely to show an inverse energy gradient effect, i.e., low energy grains tend to swallow or grow into high energy grains, and grain boundaries of close to 30° exhibit superior growth advantage to others. Another finding is that {10–12} tensile twin boundaries are sites of hardly observed for recrystallization, and are finally swallowed by adjacent recrystallized grains. The above findings may give comprehensive insights of static recrystallization and grain growth of Mg, and may guide the design of advanced materials processing in microstructural engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI