FPGA–accelerated CNN for real-time plant disease identification

现场可编程门阵列 失败 卷积神经网络 计算机科学 门阵列 并行计算 循环展开 人工智能 数据冗余 卷积(计算机科学) 规范化(社会学) 算法 计算机硬件 人工神经网络 社会学 编译程序 人类学 程序设计语言 操作系统
作者
Yuexuan Luo,Xiang Cai,Jiandong Qi,Dongdong Guo,Wenqing Che
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:207: 107715-107715 被引量:35
标识
DOI:10.1016/j.compag.2023.107715
摘要

Using convolutional neural network (CNN) to identify plant diseases in-situ is a hot research topic in smart agriculture. Due to the memory-intensive and compute-intensive characteristics of CNN algorithm, it is difficult to implement CNN on edge terminals with limited memory and computational resources. In this paper, Field Programmable Gate Array (FPGA) is used to accelerate CNN to identify plant diseases. First, a 7-layer simple-structured network called “LiteCNN”, with only 176 K parameters and 78.47 M floating point operations (FLOPs) was designed. And knowledge distillation method was used to train LiteCNN, making that the accuracy reaches 95.24 %. Secondly, the acceleration circuit of LiteCNN was designed and implemented on “ZYNQ Z7-Lite 7020″ FPGA board. To compress the network and speed up plant disease identification, the following methods were applied: 1) Separable convolution took place of regular convolution, and a low-redundancy block convolution approach was used to load data; 2) The Batch Normalization (BN) layer was fused into the previous convolutional layer (or fully-connected layer); 3) Feature data and model parameters were expressed by half float data. As the basic function of the circuit achieved, methods including unrolling the for-loop, pipelining the for-loop, loop flattening and array partitioning were used to optimize the parallelism of the circuit. Finally, LiteCNN on the FPGA board was verified. The plant disease identification accuracy was 95.71 %, the inference speed was 0.071 s per frame, and the power consumption was 2.41 W. The results show that this paper proposed a low-power, high-accuracy and fast-speed plant disease identification terminal, which can be well applied for real-time plant disease identification in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
个性湘发布了新的文献求助10
1秒前
科研通AI2S应助WalkToSky采纳,获得30
1秒前
科研通AI2S应助奋斗绮波采纳,获得10
3秒前
李健的小迷弟应助宝丁壳采纳,获得50
3秒前
HEIKU应助忧郁的灵竹采纳,获得10
3秒前
4秒前
ymh完成签到,获得积分10
5秒前
呱牛完成签到 ,获得积分10
5秒前
7秒前
xlj730227完成签到 ,获得积分10
7秒前
你要学好完成签到 ,获得积分10
8秒前
直率书包完成签到,获得积分10
8秒前
八卦巧克力完成签到,获得积分10
10秒前
WFLLL发布了新的文献求助10
12秒前
哈哈发布了新的文献求助10
12秒前
顾矜应助福桃采纳,获得10
13秒前
Zziiixl完成签到,获得积分10
15秒前
欢喜小蚂蚁完成签到 ,获得积分10
17秒前
海城好人完成签到,获得积分10
18秒前
彭于晏应助mao采纳,获得10
18秒前
20秒前
0713完成签到,获得积分10
23秒前
25秒前
期待未来的自己应助yy采纳,获得10
26秒前
27秒前
Ava应助忧郁嚣采纳,获得10
30秒前
kunkun应助含蓄小小采纳,获得30
31秒前
sasa完成签到 ,获得积分10
31秒前
苏苏苏发布了新的文献求助10
32秒前
小马甲应助tom81882采纳,获得10
34秒前
WFLLL发布了新的文献求助10
36秒前
lzl008完成签到 ,获得积分10
36秒前
ding应助魔幻的紫霜采纳,获得10
36秒前
37秒前
朴实雨竹完成签到,获得积分10
38秒前
38秒前
szz完成签到,获得积分10
38秒前
38秒前
水水发布了新的文献求助10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845754
求助须知:如何正确求助?哪些是违规求助? 3388139
关于积分的说明 10551814
捐赠科研通 3108775
什么是DOI,文献DOI怎么找? 1713076
邀请新用户注册赠送积分活动 824576
科研通“疑难数据库(出版商)”最低求助积分说明 774908