FPGA–accelerated CNN for real-time plant disease identification

现场可编程门阵列 失败 卷积神经网络 计算机科学 门阵列 并行计算 循环展开 人工智能 数据冗余 卷积(计算机科学) 规范化(社会学) 算法 计算机硬件 人工神经网络 操作系统 人类学 社会学 编译程序 程序设计语言
作者
Yuexuan Luo,Xiang Cai,Jiandong Qi,Dongdong Guo,Wenqing Che
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:207: 107715-107715 被引量:35
标识
DOI:10.1016/j.compag.2023.107715
摘要

Using convolutional neural network (CNN) to identify plant diseases in-situ is a hot research topic in smart agriculture. Due to the memory-intensive and compute-intensive characteristics of CNN algorithm, it is difficult to implement CNN on edge terminals with limited memory and computational resources. In this paper, Field Programmable Gate Array (FPGA) is used to accelerate CNN to identify plant diseases. First, a 7-layer simple-structured network called “LiteCNN”, with only 176 K parameters and 78.47 M floating point operations (FLOPs) was designed. And knowledge distillation method was used to train LiteCNN, making that the accuracy reaches 95.24 %. Secondly, the acceleration circuit of LiteCNN was designed and implemented on “ZYNQ Z7-Lite 7020″ FPGA board. To compress the network and speed up plant disease identification, the following methods were applied: 1) Separable convolution took place of regular convolution, and a low-redundancy block convolution approach was used to load data; 2) The Batch Normalization (BN) layer was fused into the previous convolutional layer (or fully-connected layer); 3) Feature data and model parameters were expressed by half float data. As the basic function of the circuit achieved, methods including unrolling the for-loop, pipelining the for-loop, loop flattening and array partitioning were used to optimize the parallelism of the circuit. Finally, LiteCNN on the FPGA board was verified. The plant disease identification accuracy was 95.71 %, the inference speed was 0.071 s per frame, and the power consumption was 2.41 W. The results show that this paper proposed a low-power, high-accuracy and fast-speed plant disease identification terminal, which can be well applied for real-time plant disease identification in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助day1采纳,获得10
刚刚
彭于晏应助小贤采纳,获得10
刚刚
2秒前
量子星尘发布了新的文献求助10
3秒前
坚定的凝云完成签到 ,获得积分10
5秒前
dd完成签到,获得积分10
5秒前
5秒前
CipherSage应助孤独的广缘采纳,获得10
6秒前
乐乐应助傲娇的觅翠采纳,获得10
6秒前
yuan完成签到 ,获得积分10
7秒前
8秒前
8秒前
浮游应助不是山谷采纳,获得10
8秒前
完美世界应助顺利静竹采纳,获得10
9秒前
10秒前
10秒前
柚子完成签到,获得积分10
10秒前
10秒前
zyc发布了新的文献求助10
11秒前
顾矜应助茹茹采纳,获得10
13秒前
蔚111发布了新的文献求助10
13秒前
nature24完成签到,获得积分10
14秒前
14秒前
小王完成签到 ,获得积分10
14秒前
思钱想瘦完成签到,获得积分20
14秒前
15秒前
顺利静竹完成签到,获得积分10
15秒前
zyc完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
小六九完成签到 ,获得积分10
15秒前
MaHongyang完成签到,获得积分10
16秒前
YChenCui发布了新的文献求助10
16秒前
丰富源智完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
lijian完成签到,获得积分10
19秒前
19秒前
22秒前
NexusExplorer应助孤独的广缘采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5047244
求助须知:如何正确求助?哪些是违规求助? 4276310
关于积分的说明 13329354
捐赠科研通 4090554
什么是DOI,文献DOI怎么找? 2238284
邀请新用户注册赠送积分活动 1245504
关于科研通互助平台的介绍 1173874