Interpretable machine learning for psychological research: Opportunities and pitfalls.

机器学习 心理信息 人工智能 口译(哲学) 计算机科学 相关性(法律) 集合(抽象数据类型) 人工神经网络 多样性(控制论) 随机森林 变量(数学) 变量 心理学 认知心理学 梅德林 数学 数学分析 程序设计语言 法学 政治学
作者
Mirka Henninger,Rudolf Debelak,Yannick Rothacher,Carolin Strobl
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:30 (2): 271-305 被引量:43
标识
DOI:10.1037/met0000560
摘要

In recent years, machine learning methods have become increasingly popular prediction methods in psychology. At the same time, psychological researchers are typically not only interested in making predictions about the dependent variable, but also in learning which predictor variables are relevant, how they influence the dependent variable, and which predictors interact with each other. However, most machine learning methods are not directly interpretable. Interpretation techniques that support researchers in describing how the machine learning technique came to its prediction may be a means to this end. We present a variety of interpretation techniques and illustrate the opportunities they provide for interpreting the results of two widely used black box machine learning methods that serve as our examples: random forests and neural networks. At the same time, we illustrate potential pitfalls and risks of misinterpretation that may occur in certain data settings. We show in which way correlated predictors impact interpretations with regard to the relevance or shape of predictor effects and in which situations interaction effects may or may not be detected. We use simulated didactic examples throughout the article, as well as an empirical data set for illustrating an approach to objectify the interpretation of visualizations. We conclude that, when critically reflected, interpretable machine learning techniques may provide useful tools when describing complex psychological relationships. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助狂野世立采纳,获得10
刚刚
巫马尔槐发布了新的文献求助10
1秒前
大苏打完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
3秒前
馆长应助去看海嘛采纳,获得10
4秒前
4秒前
4秒前
wlx完成签到 ,获得积分10
5秒前
yangican发布了新的文献求助10
5秒前
5秒前
5秒前
菜菜发布了新的文献求助10
5秒前
6秒前
ymxlcfc发布了新的文献求助10
7秒前
一颗滚石发布了新的文献求助10
7秒前
jerseyxin发布了新的文献求助80
8秒前
zyl发布了新的文献求助10
9秒前
开心的绮玉完成签到,获得积分10
10秒前
0000发布了新的文献求助10
10秒前
10秒前
黄臻发布了新的文献求助10
11秒前
追寻地坛发布了新的文献求助10
11秒前
科研通AI6应助微笑不二采纳,获得30
11秒前
Ds发布了新的文献求助10
11秒前
Ava应助keke采纳,获得10
12秒前
万能图书馆应助xryhhh采纳,获得10
12秒前
13秒前
13秒前
111发布了新的文献求助10
16秒前
慕青应助Hexagram采纳,获得10
16秒前
无花果应助欣喜靖采纳,获得10
16秒前
huihui完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
懒羊羊发布了新的文献求助10
20秒前
馆长应助去看海嘛采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184290
求助须知:如何正确求助?哪些是违规求助? 4370215
关于积分的说明 13609186
捐赠科研通 4222222
什么是DOI,文献DOI怎么找? 2315714
邀请新用户注册赠送积分活动 1314262
关于科研通互助平台的介绍 1263207