Multisource Associate Domain Adaptation for Cross-Subject and Cross-Session EEG Emotion Recognition

脑电图 计算机科学 脑-机接口 模式识别(心理学) 语音识别 人工智能 域适应 情绪识别 领域(数学分析) 不变(物理) 情绪分类 交叉验证 适应(眼睛) 频域 数学 分类器(UML) 心理学 数学分析 神经科学 精神科 数学物理 计算机视觉
作者
Qingshan She,Chenqi Zhang,Feng Fang,Yuliang Ma,Yingchun Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:28
标识
DOI:10.1109/tim.2023.3277985
摘要

Emotion recognition is important in the application of brain-computer interface (BCI). Building a robust emotion recognition model across subjects and sessions is critical in emotion based BCI systems. Electroencephalogram (EEG) is a widely used tool to recognize different emotion states. However, EEG has disadvantages such as small amplitude, low signal-to-noise ratio, and non-stationary properties, resulting in large differences across subjects. To solve these problems, this paper proposes a new emotion recognition method based on a multi-source associate domain adaptation network, considering both domain invariant and domain-specific features. First, separate branches were constructed for multiple source domains, assuming that different EEG data shared the same low-level features. Secondly, the domain specific features were extracted by using the one-to-one associate domain adaptation. Then, the weighted scores of specific sources were obtained according to the distribution distance, and multiple source classifiers were deduced with the corresponding weighted scores. Finally, EEG emotion recognition experiments were conducted on different datasets, including SEED, DEAP, and SEED-IV dataset. Results indicated that, in the cross-subject experiment, the average accuracy in SEED dataset was 86.16%, DEAP dataset was 65.59%, and SEED-IV was 59.29%. In the cross-session experiment, the accuracies of SEED and SEED-IV datasets were 91.10% and 66.68%, respectively. Our proposed method has achieved better classification results compared to state-of-the-art domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老王爱学习完成签到,获得积分10
刚刚
乐观小之应助wwww采纳,获得10
刚刚
chaos发布了新的文献求助10
刚刚
苹果发夹完成签到 ,获得积分10
1秒前
猪猪hero发布了新的文献求助10
2秒前
ALinaLi完成签到,获得积分10
2秒前
GRG完成签到 ,获得积分10
2秒前
G浅浅发布了新的文献求助10
3秒前
3秒前
顺其自然发布了新的文献求助10
3秒前
xiamovivi完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
纯真的梦竹发布了新的文献求助200
5秒前
OK完成签到,获得积分10
5秒前
和谐半青应助安安安呐采纳,获得10
5秒前
lirongcas发布了新的文献求助10
5秒前
bkagyin应助wizard采纳,获得10
6秒前
青青完成签到,获得积分10
6秒前
7秒前
Rg完成签到 ,获得积分10
7秒前
留胡子的雅山完成签到,获得积分10
7秒前
8秒前
天天完成签到,获得积分10
8秒前
小药童完成签到,获得积分10
8秒前
乐观小之应助追寻的秋玲采纳,获得30
9秒前
9秒前
9秒前
payence发布了新的文献求助10
9秒前
kkt发布了新的文献求助10
10秒前
天天发布了新的文献求助10
11秒前
yang发布了新的文献求助10
12秒前
cai完成签到,获得积分10
12秒前
科研喵完成签到,获得积分10
12秒前
SciGPT应助喜洋洋采纳,获得10
13秒前
小刺猬完成签到,获得积分10
13秒前
13秒前
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Cardiopulmonary Bypass 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717