已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Expression Recognition Based on Multi-Regional Coordinate Attention Residuals

计算机科学 面部表情 残余物 人工智能 分类器(UML) 模式识别(心理学) 特征提取 表达式(计算机科学) 噪音(视频) 面部表情识别 面部识别系统 计算机视觉 算法 图像(数学) 程序设计语言
作者
Jianghai Lan,Xingguo Jiang,Guojun Lin,Xu Zhou,Song You,Zhen Liao,Yang Fan
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 63863-63873 被引量:9
标识
DOI:10.1109/access.2023.3285781
摘要

Facial expression recognition is an important research direction of emotion computing and has broad application prospects in human-computer interaction. However, noise such as illumination and occlusion in natural environment brings many challenges to facial expression recognition. In order to solve the problems such as low recognition rate of facial expression in natural environment, unable to highlight the characteristics of facial expression in global facial research, and misclassification caused by the similarity between negative expressions. In this paper, a multi-region coordinate attentional residual expression recognition model (MrCAR) is proposed. The model is mainly composed of the following three parts: 1) multi-region input: MTCNN is used for face detection and alignment processing, and the eyes and mouth parts are further cropped to obtain multi-region pictures. Through multi-region input, local details and global features are more easily obtained, which reduces the influence of complex environmental noise and highlights the facial features. 2) Feature extraction module: On the basis of residual element, CA-Net and multi-scale convolution were added to obtain coordinate residual attention module, through which the model's ability to distinguish subtle changes of expression and the utilization rate of key features were improved; 3) Classifier: Arcface Loss is used to enhance intra-class tightness and inter-class difference at the same time, thus reducing the wrong classification of negative expressions by the model. Finally, the accuracy rates of CK+, JAFFE, FER2013 and RAF-DB were 98.78%, 99.09%, 74.50% and 88.26%, respectively. The experimental results show that compared with many advanced models, the MrCAR model in this paper is more competent for the task of expression classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助艾云欣采纳,获得10
1秒前
神经蛙完成签到,获得积分10
4秒前
7秒前
7秒前
1218完成签到 ,获得积分10
7秒前
小任性发布了新的文献求助10
12秒前
0000完成签到 ,获得积分10
12秒前
cherry发布了新的文献求助10
14秒前
14秒前
Glax完成签到 ,获得积分10
14秒前
wsj关闭了wsj文献求助
14秒前
乐乐应助li采纳,获得10
14秒前
Hello应助邓邓采纳,获得10
16秒前
艾云欣发布了新的文献求助10
18秒前
脑洞疼应助cherry采纳,获得20
18秒前
天蓬元帅应助奈奈泥采纳,获得10
19秒前
大模型应助maohui采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
21秒前
23秒前
LYL小怪兽完成签到 ,获得积分10
24秒前
苏silence完成签到,获得积分10
26秒前
烂漫的以冬应助半分甜采纳,获得10
26秒前
跳跃楼房完成签到 ,获得积分10
26秒前
27秒前
27秒前
哆啦顺利毕业完成签到 ,获得积分10
30秒前
30秒前
BASS发布了新的文献求助10
31秒前
kin完成签到 ,获得积分10
32秒前
maohui发布了新的文献求助10
32秒前
Lucas应助yangzhang采纳,获得10
34秒前
YAN完成签到 ,获得积分10
35秒前
xuhandi发布了新的文献求助10
35秒前
wab完成签到,获得积分0
35秒前
清脆凡阳完成签到 ,获得积分10
36秒前
苏silence发布了新的文献求助10
37秒前
39秒前
高分求助中
Organic Chemistry 20086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
yolo算法-游泳溺水检测数据集 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4293544
求助须知:如何正确求助?哪些是违规求助? 3820029
关于积分的说明 11961704
捐赠科研通 3463171
什么是DOI,文献DOI怎么找? 1899629
邀请新用户注册赠送积分活动 947860
科研通“疑难数据库(出版商)”最低求助积分说明 850512