Drug Design and Success of Prospective Mouse In Vitro–In Vivo Extrapolation (IVIVE) for Predictions of Plasma Clearance (CLp) from Hepatocyte Intrinsic Clearance (CLint)

体内 化学 肝细胞 代谢清除率 药品 体外 药代动力学 外推法 药理学 生物化学 医学 生物 数学 数学分析 生物技术
作者
Nenad Manevski,Kenichi Umehara,Neil Parrott
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (7): 3438-3459 被引量:3
标识
DOI:10.1021/acs.molpharmaceut.2c01001
摘要

Hepatocyte intrinsic clearance (CLint) and methods of in vitro-in vivo extrapolation (IVIVE) are often used to predict plasma clearance (CLp) in drug discovery. While the prediction success of this approach is dependent on the chemotype, specific molecular properties and drug design features that govern these outcomes are poorly understood. To address this challenge, we investigated the success of prospective mouse CLp IVIVE across 2142 chemically diverse compounds. Dilution scaling, which assumes that the free fraction in hepatocyte incubations (fu,inc) is governed by binding to the 10% of serum in the incubation medium, was used as our default CLp IVIVE approach. Results show that predictions of CLp are better for smaller (molecular weight (MW) < 500 Da), less polar (total polar surface area (TPSA) < 100 Å2, hydrogen bond donor (HBD) ≤1, hydrogen bond acceptor (HBA) ≤ 6), lipophilic (log D > 3), and neutral compounds, with low HBD count playing the key role. If compounds are classified according to their chemical space, predictions were good for compounds resembling central nervous system (CNS) drugs [average absolute fold error (AAFE) of 2.05, average fold error (AFE) of 0.90], moderate for classical druglike compounds (according to Lipinski, Veber, and Ghose guidelines; AAFE of 2.55; AFE of 0.68), and poor for nonclassical "beyond the rule of 5" compounds (AAFE of 3.31; AFE of 0.41). From the perspective of measured druglike properties, predictions of CLp were better for compounds with moderate-to-high hepatocyte CLint (>10 μL/min/106 cells), high passive cellular permeability (Papp > 100 nm/s), and moderate observed CLp (5-50 mL/min/kg). Influences of plasma protein binding (fu,p) and P-glycoprotein (Pgp) apical efflux ratio (AP-ER) were less pronounced. If the extended clearance classification system (ECCS) is applied, predictions were good for class 2 (Papp > 50 nm/s; neutral or basic; AAFE of 2.35; AFE of 0.70) and acceptable for class 1A compounds (AAFE of 2.98; AFE of 0.70). Classes 1B, 3 A/B, and 4 showed poor outcomes (AAFE > 3.80; AFE < 0.60). Functional groups trending toward weaker CLp IVIVE were esters, carbamates, sulfonamides, carboxylic acids, ketones, primary and secondary amines, primary alcohols, oxetanes, and compounds liable to aldehyde oxidase metabolism, likely due to multifactorial reasons. Multivariate analysis showed that multiple properties are relevant, combining together to define the overall success of CLp IVIVE. Our results indicate that the current practice of prospective CLp IVIVE is suitable only for CNS-like compounds and well-behaved classical druglike space (e.g., high permeability or ECCS class 2) without challenging functional groups. Unfortunately, based on existing mouse data, prospective CLp IVIVE for complex and nonclassical chemotypes is poor and hardly better than random guessing. This is likely due to complexities such as extrahepatic metabolism and transporter-mediated disposition which are poorly captured by this methodology. With small-molecule drug discovery increasingly evolving toward nonclassical and complex chemotypes, existing CLp IVIVE methodology will require improvement. While empirical correction factors may bridge the gap in the near future, improved and new in vitro assays, data integration models, and machine learning (ML) methods are increasingly needed to address this challenge and reduce the number of nonclinical pharmacokinetic (PK) studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泥過完成签到 ,获得积分10
1秒前
Akim应助槿落采纳,获得50
2秒前
大胆易巧完成签到 ,获得积分10
3秒前
蠢宝贝完成签到,获得积分10
3秒前
8秒前
丘比特应助清新的含芙采纳,获得10
9秒前
10秒前
酷波er应助畅快的孤云采纳,获得10
12秒前
13秒前
汉堡包应助weidongzhu采纳,获得10
14秒前
15秒前
爱学习完成签到,获得积分10
15秒前
15秒前
澜冰发布了新的文献求助10
16秒前
科研通AI2S应助朴实的雨筠采纳,获得10
17秒前
17秒前
KYT发布了新的文献求助10
17秒前
赘婿应助口外彭于晏采纳,获得30
17秒前
善学以致用应助月汐采纳,获得10
19秒前
adeno发布了新的文献求助10
20秒前
ziwei发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
24秒前
24秒前
25秒前
小田睡不醒完成签到,获得积分10
25秒前
26秒前
27秒前
27秒前
weidongzhu发布了新的文献求助10
28秒前
YP_024完成签到,获得积分10
28秒前
SYLH应助踏实的梦松采纳,获得10
29秒前
鲤鱼梦易发布了新的文献求助10
29秒前
30秒前
Jasper应助bq采纳,获得30
30秒前
30秒前
苹果果汁发布了新的文献求助10
30秒前
黄炜豪发布了新的文献求助10
30秒前
阿文321完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867500
求助须知:如何正确求助?哪些是违规求助? 3409858
关于积分的说明 10665370
捐赠科研通 3134049
什么是DOI,文献DOI怎么找? 1728806
邀请新用户注册赠送积分活动 833077
科研通“疑难数据库(出版商)”最低求助积分说明 780560