已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Drug Design and Success of Prospective Mouse In Vitro–In Vivo Extrapolation (IVIVE) for Predictions of Plasma Clearance (CLp) from Hepatocyte Intrinsic Clearance (CLint)

体内 化学 肝细胞 代谢清除率 药品 体外 药代动力学 外推法 药理学 生物化学 医学 生物 数学 数学分析 生物技术
作者
Nenad Manevski,Kenichi Umehara,Neil Parrott
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (7): 3438-3459 被引量:5
标识
DOI:10.1021/acs.molpharmaceut.2c01001
摘要

Hepatocyte intrinsic clearance (CLint) and methods of in vitro-in vivo extrapolation (IVIVE) are often used to predict plasma clearance (CLp) in drug discovery. While the prediction success of this approach is dependent on the chemotype, specific molecular properties and drug design features that govern these outcomes are poorly understood. To address this challenge, we investigated the success of prospective mouse CLp IVIVE across 2142 chemically diverse compounds. Dilution scaling, which assumes that the free fraction in hepatocyte incubations (fu,inc) is governed by binding to the 10% of serum in the incubation medium, was used as our default CLp IVIVE approach. Results show that predictions of CLp are better for smaller (molecular weight (MW) < 500 Da), less polar (total polar surface area (TPSA) < 100 Å2, hydrogen bond donor (HBD) ≤1, hydrogen bond acceptor (HBA) ≤ 6), lipophilic (log D > 3), and neutral compounds, with low HBD count playing the key role. If compounds are classified according to their chemical space, predictions were good for compounds resembling central nervous system (CNS) drugs [average absolute fold error (AAFE) of 2.05, average fold error (AFE) of 0.90], moderate for classical druglike compounds (according to Lipinski, Veber, and Ghose guidelines; AAFE of 2.55; AFE of 0.68), and poor for nonclassical "beyond the rule of 5" compounds (AAFE of 3.31; AFE of 0.41). From the perspective of measured druglike properties, predictions of CLp were better for compounds with moderate-to-high hepatocyte CLint (>10 μL/min/106 cells), high passive cellular permeability (Papp > 100 nm/s), and moderate observed CLp (5-50 mL/min/kg). Influences of plasma protein binding (fu,p) and P-glycoprotein (Pgp) apical efflux ratio (AP-ER) were less pronounced. If the extended clearance classification system (ECCS) is applied, predictions were good for class 2 (Papp > 50 nm/s; neutral or basic; AAFE of 2.35; AFE of 0.70) and acceptable for class 1A compounds (AAFE of 2.98; AFE of 0.70). Classes 1B, 3 A/B, and 4 showed poor outcomes (AAFE > 3.80; AFE < 0.60). Functional groups trending toward weaker CLp IVIVE were esters, carbamates, sulfonamides, carboxylic acids, ketones, primary and secondary amines, primary alcohols, oxetanes, and compounds liable to aldehyde oxidase metabolism, likely due to multifactorial reasons. Multivariate analysis showed that multiple properties are relevant, combining together to define the overall success of CLp IVIVE. Our results indicate that the current practice of prospective CLp IVIVE is suitable only for CNS-like compounds and well-behaved classical druglike space (e.g., high permeability or ECCS class 2) without challenging functional groups. Unfortunately, based on existing mouse data, prospective CLp IVIVE for complex and nonclassical chemotypes is poor and hardly better than random guessing. This is likely due to complexities such as extrahepatic metabolism and transporter-mediated disposition which are poorly captured by this methodology. With small-molecule drug discovery increasingly evolving toward nonclassical and complex chemotypes, existing CLp IVIVE methodology will require improvement. While empirical correction factors may bridge the gap in the near future, improved and new in vitro assays, data integration models, and machine learning (ML) methods are increasingly needed to address this challenge and reduce the number of nonclinical pharmacokinetic (PK) studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的香发布了新的文献求助10
1秒前
开放青旋给小菜的求助进行了留言
2秒前
3秒前
Hello应助材料生采纳,获得10
4秒前
cwy完成签到,获得积分10
4秒前
大意的安白完成签到,获得积分10
5秒前
Hello应助牛芳草采纳,获得10
5秒前
5秒前
artos完成签到,获得积分10
6秒前
亦之发布了新的文献求助10
8秒前
8秒前
NicoleUg发布了新的文献求助10
8秒前
妤懿完成签到 ,获得积分10
9秒前
黑黑126完成签到,获得积分10
9秒前
yzkyg完成签到,获得积分10
11秒前
11秒前
Galaxy8发布了新的文献求助10
11秒前
11秒前
14秒前
14秒前
Qing发布了新的文献求助10
14秒前
材料生发布了新的文献求助10
14秒前
15秒前
李健的小迷弟应助简隋英采纳,获得10
15秒前
htt发布了新的文献求助10
16秒前
李健的小迷弟应助张一森采纳,获得10
16秒前
18秒前
牛芳草发布了新的文献求助10
19秒前
平淡幻竹完成签到 ,获得积分10
19秒前
puhong zhang发布了新的文献求助10
20秒前
oxs完成签到 ,获得积分10
21秒前
苏小福完成签到,获得积分10
24秒前
Lucky完成签到,获得积分10
24秒前
fengliurencai完成签到,获得积分10
25秒前
亦之完成签到,获得积分10
25秒前
科研通AI2S应助灰灰采纳,获得30
26秒前
大胆的安容完成签到,获得积分20
27秒前
28秒前
科目三应助Qing采纳,获得10
29秒前
科研路人锋完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644122
求助须知:如何正确求助?哪些是违规求助? 4762962
关于积分的说明 15023711
捐赠科研通 4802382
什么是DOI,文献DOI怎么找? 2567421
邀请新用户注册赠送积分活动 1525132
关于科研通互助平台的介绍 1484638