From the single-atom limit to the mixed-metal phase: finding the optimum condition for activating the basal plane of a FePSe3 monolayer towards HER

单层 Atom(片上系统) 极限(数学) 基面 平面(几何) 相(物质) 金属 化学 材料科学 化学物理 结晶学 凝聚态物理 分子物理学 纳米技术 物理 数学 几何学 有机化学 计算机科学 数学分析 嵌入式系统
作者
Megha Megha,Prasenjit Sen
出处
期刊:Physical Chemistry Chemical Physics [The Royal Society of Chemistry]
卷期号:25 (26): 17269-17280
标识
DOI:10.1039/d3cp01317k
摘要

Layered ternary transition metal tri-chalcogenides are some of the most promising candidates for hydrogen evolution reaction (HER) because of their ease of synthesis and affordability. However, majority of the materials in this category have HER active sites only at their edges, rendering a large portion of the catalyst useless. In this work, ways for activating the basal planes of one of these materials, namely, FePSe3, are explored. The effects of substitutional transition metal doping and external biaxial tensile strain on the HER activity of the basal plane of a FePSe3 monolayer are studied via first principles electronic structure calculations based on density functional theory. This study reveals that although the basal plane of the pristine material is inactive towards HER (value of H adsorption free energy, ΔGH* = 1.41 eV), 25% Zr, Mo, and Tc doping makes it more active (ΔGH* = 0.25, 0.22 and 0.13 eV, respectively). The effect of reducing the doping concentration, moving to the single-atom limit, on the catalytic activity is studied for Sc, Y, Zr, Mo, Tc and Rh dopants. For Tc, the mixed-metal phase FeTcP2Se6 is also studied. Among the unstrained materials, 25% Tc-doped FePSe3 gives the best result. Significant tunability of HER catalytic activity in the 6.25% Sc doped FePSe3 monolayer via strain engineering is also discovered. An external tensile strain of 5% reduces ΔGH* to ∼0 eV from 1.08 eV in the unstrained material, making this an attractive candidate for HER catalysis. The Volmer-Heyrovsky and Volmer-Tafel pathways are examined for some of the systems. A fascinating correlation between the electronic density of states and HER activity is also observed in most materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助俏皮的人生采纳,获得10
1秒前
zhulijiao发布了新的文献求助10
1秒前
3秒前
5秒前
传奇3应助哈哈哈采纳,获得10
5秒前
聪慧的小伙完成签到 ,获得积分10
6秒前
6秒前
7秒前
爱爱完成签到 ,获得积分10
7秒前
七米日光完成签到 ,获得积分10
8秒前
lili完成签到,获得积分10
8秒前
SOLOMON应助基莲采纳,获得10
8秒前
互助遵法尚德应助基莲采纳,获得10
8秒前
LHY应助基莲采纳,获得10
8秒前
Hao应助基莲采纳,获得10
8秒前
FashionBoy应助基莲采纳,获得10
8秒前
ty关闭了ty文献求助
8秒前
如你发布了新的文献求助30
9秒前
yu完成签到,获得积分10
9秒前
梦终应完成签到,获得积分20
9秒前
沉淀完成签到 ,获得积分10
11秒前
自信傲柔完成签到,获得积分10
12秒前
serpant完成签到,获得积分10
13秒前
呆萌易真发布了新的文献求助10
13秒前
思瑞德完成签到 ,获得积分10
14秒前
诸缘郡完成签到,获得积分10
15秒前
无奈秋荷完成签到 ,获得积分10
16秒前
共享精神应助战战采纳,获得10
16秒前
三木发布了新的文献求助10
17秒前
July完成签到,获得积分10
18秒前
小木子发布了新的文献求助10
18秒前
材料小刘鸭完成签到,获得积分10
19秒前
yunn完成签到,获得积分10
20秒前
丘比特应助昵称采纳,获得10
20秒前
20秒前
左丘忻完成签到,获得积分10
21秒前
呆萌易真完成签到,获得积分10
23秒前
yu发布了新的文献求助20
24秒前
24秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
The Three Stars Each: The Astrolabes and Related Texts 900
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
Glossary of Geology 400
Additive Manufacturing Design and Applications 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2475850
求助须知:如何正确求助?哪些是违规求助? 2140406
关于积分的说明 5454645
捐赠科研通 1863713
什么是DOI,文献DOI怎么找? 926514
版权声明 562846
科研通“疑难数据库(出版商)”最低求助积分说明 495724