Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer

计算机科学 稳健性(进化) 学习迁移 人工智能 对抗制 机器学习 集合(抽象数据类型) 班级(哲学) 上下界 差异(会计) 传输(计算) 数据挖掘 数学 会计 数学分析 业务 基因 并行计算 生物化学 化学 程序设计语言
作者
Yafei Deng,Jun Lv,Delin Huang,Shichang Du
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:548: 126391-126391 被引量:64
标识
DOI:10.1016/j.neucom.2023.126391
摘要

Recently, deep transfer learning-based intelligent machine diagnosis has been well investigated, and the source and the target domain are commonly assumed to share the same fault categories, which can be called as the closed-set diagnosis transfer (CSDT). However, this assumption is hard to cover real engineering scenarios because some unknown new fault may occur unexpectedly due to the uncertainty and complexity of machinery components, which is called as the open-set diagnosis transfer (OSDT). To solve this challenging but more realistic problem, a Theory-guided Progressive Transfer Learning Network (TPTLN) is proposed in this paper. First, the upper bound of transfer learning model under open-set setting is thoroughly analyzed, which provides a theoretical insight to guide the model optimization. Second, a two-stage module is designed to carry out distracting unknown target samples and attracting known samples through progressive learning, which could effectively promote inter-class separability and intra-class compactness. The performance of proposed TPTLN is evaluated in two OSDT cases, where the diagnosis knowledge is transferred across bearings and gearbox running under different working conditions. Comparative results show that the proposed method achieves better robustness and diagnostic performance under different degrees of domain shift and openness variance. The source codes and links to the data can be found in the following GitHub repository: https://github.com/phoenixdyf/Theory-guided-Progressive-Transfer-LearningNetwork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
戴帽子的花盆完成签到,获得积分10
刚刚
刚刚
科研大大完成签到 ,获得积分10
1秒前
MrHua完成签到,获得积分10
1秒前
沈惠映发布了新的文献求助10
1秒前
2秒前
高高乐天发布了新的文献求助10
2秒前
我是老大应助SevenKing采纳,获得10
2秒前
3秒前
3秒前
慕青应助宁宁宁采纳,获得10
3秒前
星辰大海应助Zcz采纳,获得10
4秒前
思源应助pbj采纳,获得10
4秒前
4秒前
Owen应助端庄威采纳,获得30
5秒前
传统的白竹完成签到,获得积分10
5秒前
6秒前
1111发布了新的文献求助10
7秒前
7秒前
damitang发布了新的文献求助10
7秒前
7秒前
8秒前
123发布了新的文献求助10
8秒前
田yg发布了新的文献求助30
8秒前
8秒前
asdasdas完成签到,获得积分10
8秒前
9秒前
梦里花落声应助蕃茄可乐采纳,获得10
9秒前
9秒前
靓丽瓦驴发布了新的文献求助10
9秒前
9秒前
9秒前
zhuo发布了新的文献求助10
9秒前
八爪完成签到,获得积分10
9秒前
Orange应助ccm采纳,获得10
10秒前
科研通AI5应助tonyfountain采纳,获得10
10秒前
深情安青应助双吉芝士堡采纳,获得10
10秒前
共享精神应助DDD采纳,获得10
10秒前
SevenKing完成签到,获得积分10
10秒前
思源应助11采纳,获得10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154634
求助须知:如何正确求助?哪些是违规求助? 4350313
关于积分的说明 13545065
捐赠科研通 4193152
什么是DOI,文献DOI怎么找? 2299764
邀请新用户注册赠送积分活动 1299749
关于科研通互助平台的介绍 1244797