已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining the theoretical bound and deep adversarial network for machinery open-set diagnosis transfer

计算机科学 稳健性(进化) 学习迁移 人工智能 对抗制 机器学习 集合(抽象数据类型) 班级(哲学) 上下界 差异(会计) 传输(计算) 数据挖掘 数学 数学分析 生物化学 化学 会计 并行计算 业务 基因 程序设计语言
作者
Yafei Deng,Jun Lv,Delin Huang,Shichang Du
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:548: 126391-126391 被引量:56
标识
DOI:10.1016/j.neucom.2023.126391
摘要

Recently, deep transfer learning-based intelligent machine diagnosis has been well investigated, and the source and the target domain are commonly assumed to share the same fault categories, which can be called as the closed-set diagnosis transfer (CSDT). However, this assumption is hard to cover real engineering scenarios because some unknown new fault may occur unexpectedly due to the uncertainty and complexity of machinery components, which is called as the open-set diagnosis transfer (OSDT). To solve this challenging but more realistic problem, a Theory-guided Progressive Transfer Learning Network (TPTLN) is proposed in this paper. First, the upper bound of transfer learning model under open-set setting is thoroughly analyzed, which provides a theoretical insight to guide the model optimization. Second, a two-stage module is designed to carry out distracting unknown target samples and attracting known samples through progressive learning, which could effectively promote inter-class separability and intra-class compactness. The performance of proposed TPTLN is evaluated in two OSDT cases, where the diagnosis knowledge is transferred across bearings and gearbox running under different working conditions. Comparative results show that the proposed method achieves better robustness and diagnostic performance under different degrees of domain shift and openness variance. The source codes and links to the data can be found in the following GitHub repository: https://github.com/phoenixdyf/Theory-guided-Progressive-Transfer-LearningNetwork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwwteng呀完成签到,获得积分10
1秒前
Yi发布了新的文献求助10
2秒前
2秒前
huahua完成签到 ,获得积分10
3秒前
dt完成签到,获得积分20
3秒前
我的Diy发布了新的文献求助10
4秒前
Charlie完成签到,获得积分10
6秒前
zai发布了新的文献求助10
6秒前
acadedog完成签到 ,获得积分10
6秒前
7秒前
7秒前
10秒前
YTUgm完成签到,获得积分10
10秒前
11秒前
香蕉觅云应助南一采纳,获得10
11秒前
11秒前
12秒前
于生有你完成签到,获得积分10
13秒前
ZZZZZ发布了新的文献求助10
15秒前
wkkk发布了新的文献求助10
15秒前
北方完成签到,获得积分10
16秒前
16秒前
科研通AI2S应助缓慢思枫采纳,获得10
18秒前
啥也不会完成签到 ,获得积分10
19秒前
情怀应助飞快的三问采纳,获得10
21秒前
22秒前
24秒前
gulugulu发布了新的文献求助10
25秒前
Cll完成签到 ,获得积分10
27秒前
Alex应助nbnbaaa采纳,获得10
28秒前
财源滚滚发布了新的文献求助30
31秒前
王木木完成签到 ,获得积分10
31秒前
jawa完成签到 ,获得积分10
31秒前
32秒前
帅气老虎发布了新的文献求助10
35秒前
xkk发布了新的文献求助10
39秒前
贾舒涵发布了新的文献求助10
40秒前
41秒前
42秒前
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787950
求助须知:如何正确求助?哪些是违规求助? 3333535
关于积分的说明 10262359
捐赠科研通 3049339
什么是DOI,文献DOI怎么找? 1673496
邀请新用户注册赠送积分活动 802042
科研通“疑难数据库(出版商)”最低求助积分说明 760475