GALA: Graph Diffusion-based Alignment with Jigsaw for Source-free Domain Adaptation

拼图 计算机科学 域适应 人工智能 图形 领域(数学分析) 适应(眼睛) 图论 理论计算机科学 数学 组合数学 数学分析 物理 数学教育 分类器(UML) 光学
作者
Junyu Luo,Yiyang Gu,Xiao Luo,Wei Ju,Zhiping Xiao,Yusheng Zhao,Jingyang Yuan,Ming Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2024.3416372
摘要

Source-free domain adaptation is a crucial machine learning topic, as it contains numerous applications in the real world, particularly with respect to data privacy. Existing approaches predominantly focus on Euclidean data, such as images and videos, while the exploration of non-Euclidean graph data remains scarce. Recent graph neural network (GNN) approaches could suffer from serious performance decline due to domain shift and label scarcity in source-free adaptation scenarios. In this study, we propose a novel method named Graph Diffusion-based Alignment with Jigsaw (GALA) tailored for source-free graph domain adaptation. To achieve domain alignment, GALA employs a graph diffusion model to reconstruct source-style graphs from target data. Specifically, a score-based graph diffusion model is trained using source graphs to learn the generative source styles. Then, we introduce perturbations to target graphs via a stochastic differential equation instead of sampling from a prior, followed by the reverse process to reconstruct source-style graphs. We feed them into an off-the-shelf GNN and introduce class-specific thresholds with curriculum learning, which can generate accurate and unbiased pseudo-labels for target graphs. Moreover, we develop a simple yet effective graph mixing strategy named graph jigsaw to combine confident graphs and unconfident graphs, which can enhance generalization capabilities and robustness via consistency learning. Extensive experiments on benchmark datasets validate the effectiveness of GALA. The source code is available at https://github.com/luo-junyu/GALA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助美女采纳,获得10
1秒前
李健应助摩登灰太狼采纳,获得10
1秒前
1秒前
林俊超完成签到,获得积分10
1秒前
ice发布了新的文献求助10
2秒前
rsimap360完成签到,获得积分10
2秒前
悦耳的涫发布了新的文献求助10
2秒前
SciGPT应助小心采纳,获得10
2秒前
兮希嘻夕发布了新的文献求助10
2秒前
桐桐应助FJ采纳,获得10
2秒前
3秒前
图图发布了新的文献求助20
3秒前
二三完成签到,获得积分10
4秒前
平淡傲南发布了新的文献求助10
4秒前
SnaiLinsist发布了新的文献求助10
5秒前
上官若男应助0℃采纳,获得10
5秒前
英俊的铭应助沫沫采纳,获得10
5秒前
6秒前
Youaremyworld发布了新的文献求助10
6秒前
桐桐应助SSSstriker采纳,获得10
6秒前
yo一天发布了新的文献求助10
7秒前
田様应助大猫喵喵喵采纳,获得10
7秒前
7秒前
7秒前
猪猪猪发布了新的文献求助10
7秒前
7秒前
8秒前
lixiaoya完成签到,获得积分10
8秒前
8秒前
开心重要发布了新的文献求助10
9秒前
zzznznnn发布了新的文献求助30
10秒前
11秒前
11秒前
会飞的猪完成签到,获得积分10
11秒前
TT发布了新的文献求助10
12秒前
yo一天完成签到,获得积分10
12秒前
豆豆发布了新的文献求助10
12秒前
13秒前
chen666发布了新的文献求助10
14秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790721
求助须知:如何正确求助?哪些是违规求助? 3335649
关于积分的说明 10275642
捐赠科研通 3052119
什么是DOI,文献DOI怎么找? 1675026
邀请新用户注册赠送积分活动 803005
科研通“疑难数据库(出版商)”最低求助积分说明 761007