The effect of transactive memory systems on supply chain network collaboration

供应链 业务 事务性记忆 独创性 供应网络 供应链管理 知识管理 可靠性 过程管理 价值(数学) 利用 过程(计算) 产业组织 营销 计算机科学 定性研究 法学 社会学 功率(物理) 物理 机器学习 操作系统 量子力学 计算机安全 社会科学 政治学
作者
Kevin P. Scheibe,Prabhjot S. Mukandwal,Scott J. Grawe
出处
期刊:International Journal of Physical Distribution & Logistics Management [Emerald Publishing Limited]
卷期号:52 (9/10): 791-812 被引量:5
标识
DOI:10.1108/ijpdlm-07-2021-0288
摘要

Purpose This research is aimed at understanding how inter-organizational team members' ability to encode, interpret, retain and recall knowledge can lead to effective supply chain collaboration, resulting in improved firm performance. Using the lens of transactive memory systems (TMS), this research demonstrates the value of knowing who knows what (specialization), is it trustworthy (credibility) and how to retrieve it (coordination) on supply chain firm performance through network collaboration. Design/methodology/approach The authors used a multi-method approach that includes quantitative survey methodology and a qualitative methodology using semi-structured interviews. In total, 207 survey responses and six semi-structured interviews provided valuable insights into the use of TMS in supply chain relationships. Findings This study shows that TMS can enable firms to exploit potential benefits of collaboration on network optimization, thus improving the overall efficiency and process innovations. Practical implications To maintain the efficient use of a firm's assets while suppliers get added or removed from the network, this study’s findings suggest that managers should be more knowledgeable of supply chain partners carrying codified knowledge, which can contribute to superior firm performance. Recognizing that when two or more firms collaborate, there are multiple supply chains affected by each decision, it is important that managers carefully assign the specific role of each firm within the supply chain. Originality/value This research takes a new approach to network optimization by specifically considering how firms work together to share information about their changing networks to allow firms throughout the supply chain to gain greater levels of asset efficiency and process improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺顺发布了新的文献求助150
刚刚
大模型应助标致的醉冬采纳,获得30
刚刚
1秒前
2秒前
廖小同发布了新的文献求助10
2秒前
yydsyk完成签到,获得积分10
3秒前
无奈的惜蕊完成签到,获得积分10
3秒前
3秒前
5秒前
du完成签到 ,获得积分0
5秒前
han完成签到,获得积分10
5秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
自然听兰发布了新的文献求助10
9秒前
Jemry发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
orixero应助cwwqt采纳,获得10
12秒前
奇大可完成签到 ,获得积分10
12秒前
科目三应助震动的戒指采纳,获得10
12秒前
廖小同完成签到,获得积分10
12秒前
13秒前
小二郎应助Jemry采纳,获得10
13秒前
14秒前
14秒前
14秒前
15秒前
科研通AI6应助结实的以莲采纳,获得10
15秒前
快乐非笑发布了新的文献求助10
16秒前
浮游应助刘茂帅采纳,获得10
16秒前
16秒前
16秒前
江边鸟发布了新的文献求助20
17秒前
jyy应助hzauhzau采纳,获得10
17秒前
qingmao完成签到,获得积分10
17秒前
独特乘云发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
zyq1996完成签到,获得积分10
19秒前
小米周发布了新的文献求助30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276