Detector shifting and deep learning based ring artifact correction method for low‐dose CT

人工智能 工件(错误) 探测器 计算机视觉 计算机科学 核医学 戒指(化学) 医学影像学 计算机断层摄影术 医学物理学 物理 光学 医学 放射科 有机化学 化学
作者
Yuedong Liu,Cunfeng Wei,Qiong Xu
出处
期刊:Medical Physics [Wiley]
卷期号:50 (7): 4308-4324 被引量:12
标识
DOI:10.1002/mp.16225
摘要

Abstract Background In x‐ray computed tomography (CT), the gain inconsistency of detector units leads to ring artifacts in the reconstructed images, seriously destroys the image structure, and is not conducive to image recognition. In addition, to reduce radiation dose and scanning time, especially photon counting CT, low‐dose CT is required, so it is important to reduce the noise and suppress ring artifacts in low‐dose CT images simultaneously. Purpose Deep learning is an effective method to suppress ring artifacts, but there are still residual artifacts in corrected images. And the feature recognition ability of the network for ring artifacts decreases due to the effect of noise in the low‐dose CT images. In this paper, a method is proposed to achieve noise reduction and ring artifact removal simultaneously. Methods To solve these problems, we propose a ring artifact correction method for low‐dose CT based on detector shifting and deep learning in this paper. Firstly, at the CT scanning stage, the detector horizontally shifts randomly at each projection to alleviate the ring artifacts as front processing. Thus, the ring artifacts are transformed into dispersed noise in front processed images. Secondly, deep learning is used for dispersed noise and statistical noise reduction. Results Both simulation and real data experiments are conducted to evaluate the proposed method. Compared to other methods, the results show that the proposed method in this paper has better effect on removing ring artifacts in the low‐dose CT images. Specifically, the RMSEs and SSIMs of the two sets of simulated and experiment data are better compared to the raw images significantly. Conclusions The method proposed in this paper combines detector shifting and deep learning to remove ring artifacts and statistical noise simultaneously. The results show that the proposed method is able to get better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
ding应助小猪采纳,获得10
2秒前
3秒前
3秒前
totolo发布了新的文献求助10
4秒前
科研通AI5应助大方的凌波采纳,获得10
5秒前
6秒前
浮游应助缓慢的中蓝采纳,获得10
6秒前
传奇3应助自然初珍采纳,获得10
6秒前
嗯嗯哈哈发布了新的文献求助10
6秒前
调皮静竹发布了新的文献求助10
7秒前
科研通AI5应助于玕采纳,获得10
7秒前
7秒前
vetXue发布了新的文献求助10
7秒前
Lucas应助chem采纳,获得10
7秒前
Willow完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
大个应助ZzRG采纳,获得10
8秒前
英姑应助恭喜发财采纳,获得10
9秒前
9秒前
科研通AI5应助黄海采纳,获得10
10秒前
舒心的友容完成签到,获得积分10
10秒前
10秒前
11秒前
王漂泊完成签到,获得积分10
11秒前
xiazhishang应助张张小白采纳,获得10
12秒前
31313发布了新的文献求助10
12秒前
12秒前
13秒前
浮游应助ZD采纳,获得10
14秒前
YifanWang应助一个小胖子采纳,获得10
14秒前
14秒前
小猪发布了新的文献求助10
14秒前
一修发布了新的文献求助10
15秒前
kwb完成签到,获得积分10
16秒前
ysan给ysan的求助进行了留言
18秒前
百别发布了新的文献求助30
18秒前
赫灵竹完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4680049
求助须知:如何正确求助?哪些是违规求助? 4056227
关于积分的说明 12542524
捐赠科研通 3750865
什么是DOI,文献DOI怎么找? 2071554
邀请新用户注册赠送积分活动 1100629
科研通“疑难数据库(出版商)”最低求助积分说明 980074