Voxel-based representation of 3D point clouds: Methods, applications, and its potential use in the construction industry

点云 体素 计算机科学 点(几何) 人工智能 激光扫描 计算机视觉 代表(政治) 数学 几何学 激光器 物理 政治 政治学 法学 光学
作者
Yusheng Xu,Xiaohua Tong,Uwe Stilla
出处
期刊:Automation in Construction [Elsevier BV]
卷期号:126: 103675-103675 被引量:152
标识
DOI:10.1016/j.autcon.2021.103675
摘要

Abstract Point clouds acquired through laser scanning and stereo vision techniques have been applied in a wide range of applications, proving to be optimal sources for mapping 3D urban scenes. Point clouds provide 3D spatial coordinates of geometric surfaces, describing the real 3D world with both geometric information and attributes. However, unlike 2D images, raw point clouds are usually unstructured and contain no semantic, geometric, or topological information of objects. This lack of an adequate data structure is a bottleneck for the pre-processing or further application of raw point clouds. Thus, it is generally necessary to organize and structure the 3D discrete points into a higher-level representation, such as voxels. Using voxels to represent discrete points is a common and effective way to organize and structure 3D point clouds. Voxels, similar to pixels in an image, are abstracted 3D units with pre-defined volumes, positions, and attributes, which can be used to structurally represent discrete points in a topologically explicit and information-rich manner. Although methods and algorithms for point clouds in various fields have been frequently reported throughout the last decade, there have been very few reviews summarizing and discussing the voxel-based representation of 3D point clouds in urban scenarios. Therefore, this paper aims to conduct a thorough review of the state-of-the-art methods and applications of voxel-based point cloud representations from a collection of papers in the recent decade. In particular, we focus on the creation and utilization of voxels, as well as the strengths and weaknesses of various methods using voxels. Moreover, we also provide an analysis of the potential of using voxel-based representations in the construction industry. Finally, we provide recommendations on future research directions regarding the future tendency of the voxel-based point cloud representations and its improvements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助webof采纳,获得10
1秒前
1秒前
蜗牛完成签到,获得积分10
1秒前
搞不好你们完成签到,获得积分10
2秒前
哈哈发布了新的文献求助10
2秒前
SHlby完成签到,获得积分10
2秒前
wddddd完成签到,获得积分10
3秒前
kingwill应助天真芷云采纳,获得20
3秒前
高大的阁发布了新的文献求助30
3秒前
科研通AI2S应助平静和满足采纳,获得10
3秒前
科研通AI5应助无辜涵雁采纳,获得10
3秒前
杰2580发布了新的文献求助10
3秒前
hmy完成签到,获得积分10
4秒前
濛嘻嘻发布了新的文献求助10
4秒前
LooQueSiento完成签到,获得积分10
4秒前
雪白雪旋发布了新的文献求助10
4秒前
只鱼完成签到 ,获得积分10
4秒前
研友_想想发布了新的文献求助10
5秒前
Theone完成签到,获得积分10
5秒前
光亮静槐发布了新的文献求助10
5秒前
大模型应助chem采纳,获得10
5秒前
万能图书馆应助McUltrman采纳,获得10
6秒前
6秒前
猪猪hero应助祖念真采纳,获得10
6秒前
6秒前
霜降发布了新的文献求助10
7秒前
7秒前
7秒前
江柚白完成签到,获得积分10
7秒前
晨曦发布了新的文献求助10
8秒前
SHlby发布了新的文献求助10
8秒前
丘比特应助优雅汉堡采纳,获得10
8秒前
8秒前
Theone发布了新的文献求助10
8秒前
8秒前
小小鱼完成签到,获得积分10
9秒前
RY完成签到,获得积分10
9秒前
10秒前
优秀绮彤发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813647
求助须知:如何正确求助?哪些是违规求助? 3358007
关于积分的说明 10390954
捐赠科研通 3075296
什么是DOI,文献DOI怎么找? 1689246
邀请新用户注册赠送积分活动 812632
科研通“疑难数据库(出版商)”最低求助积分说明 767252