Prediction Interval Estimation of Aeroengine Remaining Useful Life Based on Bidirectional Long Short-Term Memory Network

预言 计算机科学 聚类分析 区间(图论) 数据挖掘 航空发动机 期限(时间) 模糊逻辑 钥匙(锁) 人工神经网络 人工智能 可靠性工程 工程类 数学 机械工程 组合数学 物理 量子力学 计算机安全
作者
Chuang Chen,Ningyun Lu,Bin Jiang,Yin Xing,Zheng Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:105
标识
DOI:10.1109/tim.2021.3126006
摘要

Reliable and accurate aero-engine remaining useful life (RUL) prediction plays a key role in aero-engine prognostics and health management (PHM) system. However, due to the epistemic uncertainties associated with aero-engine systems, prediction errors are unavoidable and sometimes significant in traditional deterministic point prediction methods. To improve the accuracy and credibility of RUL prediction, a novel prediction interval (PI) estimation method is proposed to quantify the uncertainties in RUL prediction. The proposed method involves the data clustering, mathematical statistical analysis and deep learning techniques, and is achieved through offline and online phases. In the offline phase, an enhanced fuzzy c-means algorithm (FCM) is proposed to divide the aero-engine health status into several discrete states. After labeling the health state of each sampling point, PIs are computed for them. This step is achieved by the empirical distributions of errors associated with all instances belonging to the health state under consideration. In the online phase, a bidirectional long short-term memory (Bi-LSTM) network is employed to estimate the boundaries of point prediction, and thus the PI of aero-engine RUL is generated. The aero-engine degradation dataset from NASA is used to validate the proposed RUL PI estimation method. The results obtained indicate that the proposed method is a promising tool for providing reliable aero-engine RUL interval estimates, which can inform maintenance-related decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情飞松发布了新的文献求助10
刚刚
耶耶耶完成签到,获得积分10
1秒前
12333发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Ray-Q发布了新的文献求助10
3秒前
3秒前
寒冷毛衣发布了新的文献求助10
4秒前
SciGPT应助机智冰姬采纳,获得10
4秒前
Twonej应助科研通管家采纳,获得30
5秒前
科目三应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
NN应助科研通管家采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
Hello应助科研通管家采纳,获得10
5秒前
5秒前
张杰应助科研通管家采纳,获得80
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
7秒前
9秒前
Ray-Q完成签到,获得积分10
9秒前
9秒前
在水一方应助寒冷毛衣采纳,获得10
9秒前
10秒前
10秒前
lytelope完成签到,获得积分10
11秒前
12秒前
Ava应助LMZ采纳,获得30
12秒前
14秒前
君故完成签到,获得积分10
15秒前
鲸鱼姐姐发布了新的文献求助10
15秒前
bjtuBTBT完成签到,获得积分10
16秒前
风中的迎丝完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704982
求助须知:如何正确求助?哪些是违规求助? 5160109
关于积分的说明 15243509
捐赠科研通 4858841
什么是DOI,文献DOI怎么找? 2607448
邀请新用户注册赠送积分活动 1558519
关于科研通互助平台的介绍 1516177