Objective features of sedentary time and light activity differentiate people with low back pain from healthy controls: a pilot study

医学 腰痛 加速度计 体力活动 物理疗法 心理干预 物理医学与康复 随机森林 机器学习 替代医学 病理 计算机科学 操作系统 精神科
作者
Christy Tomkins‐Lane,Ruopeng Sun,Amir Muaremi,Patricia Zheng,Manoj Mohan,Ma Agnes Ith,Matthew Smuck
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (4): 629-634 被引量:8
标识
DOI:10.1016/j.spinee.2021.11.005
摘要

Abstract Background context Physical inactivity has been described as both a cause and a consequence of low back pain (LBP) largely based on self-reported measures of daily activity. A better understanding of the connections between routine physical activity and LBP may improve LBP interventions. Purpose In this study, we aim to objectively characterize the free-living physical activity of people with low back pain in comparison to healthy controls using accelerometers, and we aim to derive a set of LBP-specific physical activity minutes thresholds that may be used as targets for future physical activity interventions. Study Design Cross-sectional Patient Sample 22 low back pain patients and 155 controls. Outcome Measures Accelerometry derived physical activity measures. Methods Twenty-two people with LBP were compared to 155 age and gender-matched healthy controls. All subjects wore an ActiGraph accelerometer on the right hip for 7-consecutive days. Accelerometry-based physical activity features (count-per-minute CPM) were derived using Freedson's intervals and physical performance intervals.  A random forest machine learning classifier was trained to classify LBP status using a leave-one-out cross-validation procedure. An interpretation algorithm, the SHapley Additive exPlanations (SHAP) algorithm was subsequently applied to assess the feature importance and to establish LBP-specific physical activity thresholds. Results The LBP group reported mild to moderate disability (average ODI=18.5). The random forest classifier identified a set of 8 features (digital biomarkers) that achieved 88.1% accuracy for distinguishing LBP from controls.  All of the top distinguishing features were related to differences in the sedentary and light activity ranges ( Conclusions We describe a set of physical activity features from accelerometry data associated with LBP. All of the discriminating features were derived from the sedentary and light activity range.  We also identified specific activity intensity minutes thresholds that distinguished LBP subjects from healthy controls.Future examination on the digital markers and thresholds identified through this work can be used to improve physical activity interventions for LBP treatment and prevention by allowing the development of LBP-specific physical activity guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴书玙珩完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
单晶结构解析完成签到,获得积分10
2秒前
3秒前
浮游应助简单玉米采纳,获得20
4秒前
xiaofan_www完成签到,获得积分10
5秒前
mnm发布了新的文献求助10
5秒前
6秒前
suihan完成签到,获得积分10
7秒前
8秒前
polarisier完成签到,获得积分10
9秒前
行行行发布了新的文献求助10
9秒前
hsing完成签到,获得积分10
9秒前
ALICEJACK完成签到,获得积分10
9秒前
10秒前
xxs关闭了xxs文献求助
10秒前
111完成签到,获得积分10
11秒前
sss关注了科研通微信公众号
11秒前
浮游应助安详冰夏采纳,获得10
13秒前
Geodada完成签到,获得积分10
16秒前
在水一方应助千陽采纳,获得10
16秒前
16秒前
16秒前
17秒前
摇摆小狗发布了新的文献求助10
17秒前
科研通AI2S应助鱼中屿采纳,获得10
19秒前
研友_nq5EGn完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
zzzzz发布了新的文献求助10
20秒前
拼搏尔竹发布了新的文献求助10
21秒前
渐离完成签到,获得积分10
22秒前
zy发布了新的文献求助10
22秒前
22秒前
23秒前
石头完成签到,获得积分10
24秒前
搜集达人应助蛋堡采纳,获得10
25秒前
25秒前
天天快乐应助zxzb采纳,获得10
26秒前
26秒前
何香稳完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5490181
求助须知:如何正确求助?哪些是违规求助? 4588853
关于积分的说明 14421629
捐赠科研通 4520708
什么是DOI,文献DOI怎么找? 2476826
邀请新用户注册赠送积分活动 1462308
关于科研通互助平台的介绍 1435222