Objective features of sedentary time and light activity differentiate people with low back pain from healthy controls: a pilot study

医学 腰痛 加速度计 体力活动 物理疗法 心理干预 物理医学与康复 随机森林 机器学习 替代医学 病理 计算机科学 精神科 操作系统
作者
Christy Tomkins‐Lane,Ruopeng Sun,Amir Muaremi,Patricia Zheng,Manoj Mohan,Ma Agnes Ith,Matthew Smuck
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:22 (4): 629-634 被引量:8
标识
DOI:10.1016/j.spinee.2021.11.005
摘要

Abstract Background context Physical inactivity has been described as both a cause and a consequence of low back pain (LBP) largely based on self-reported measures of daily activity. A better understanding of the connections between routine physical activity and LBP may improve LBP interventions. Purpose In this study, we aim to objectively characterize the free-living physical activity of people with low back pain in comparison to healthy controls using accelerometers, and we aim to derive a set of LBP-specific physical activity minutes thresholds that may be used as targets for future physical activity interventions. Study Design Cross-sectional Patient Sample 22 low back pain patients and 155 controls. Outcome Measures Accelerometry derived physical activity measures. Methods Twenty-two people with LBP were compared to 155 age and gender-matched healthy controls. All subjects wore an ActiGraph accelerometer on the right hip for 7-consecutive days. Accelerometry-based physical activity features (count-per-minute CPM) were derived using Freedson's intervals and physical performance intervals.  A random forest machine learning classifier was trained to classify LBP status using a leave-one-out cross-validation procedure. An interpretation algorithm, the SHapley Additive exPlanations (SHAP) algorithm was subsequently applied to assess the feature importance and to establish LBP-specific physical activity thresholds. Results The LBP group reported mild to moderate disability (average ODI=18.5). The random forest classifier identified a set of 8 features (digital biomarkers) that achieved 88.1% accuracy for distinguishing LBP from controls.  All of the top distinguishing features were related to differences in the sedentary and light activity ranges ( Conclusions We describe a set of physical activity features from accelerometry data associated with LBP. All of the discriminating features were derived from the sedentary and light activity range.  We also identified specific activity intensity minutes thresholds that distinguished LBP subjects from healthy controls.Future examination on the digital markers and thresholds identified through this work can be used to improve physical activity interventions for LBP treatment and prevention by allowing the development of LBP-specific physical activity guidelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
4秒前
奶昔驳回了英姑应助
4秒前
侦察兵发布了新的文献求助10
6秒前
健忘数据线完成签到 ,获得积分10
7秒前
千百度发布了新的文献求助10
7秒前
小甜甜发布了新的文献求助10
8秒前
nandou发布了新的文献求助10
9秒前
忆之完成签到,获得积分20
11秒前
祈愿完成签到,获得积分10
11秒前
华仔应助壮壮哥采纳,获得50
11秒前
11秒前
12秒前
12秒前
13秒前
侦察兵完成签到,获得积分10
13秒前
乐观小之应助泰迪的梦想采纳,获得10
13秒前
过过过发布了新的文献求助10
16秒前
yhy发布了新的文献求助10
17秒前
sunzhuxi发布了新的文献求助10
17秒前
18秒前
沉静河马完成签到,获得积分10
21秒前
21秒前
shibomeng完成签到,获得积分10
24秒前
CPGF完成签到 ,获得积分10
25秒前
26秒前
田様应助llll采纳,获得10
26秒前
shibomeng发布了新的文献求助10
26秒前
FSF完成签到,获得积分10
27秒前
你小子发布了新的文献求助10
28秒前
徐徐诱之完成签到,获得积分10
29秒前
31秒前
扶桑发布了新的文献求助10
33秒前
坚定文龙发布了新的文献求助10
33秒前
33秒前
moon发布了新的文献求助30
33秒前
hyman1218完成签到 ,获得积分10
34秒前
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819001
求助须知:如何正确求助?哪些是违规求助? 3362081
关于积分的说明 10415274
捐赠科研通 3080389
什么是DOI,文献DOI怎么找? 1694417
邀请新用户注册赠送积分活动 814624
科研通“疑难数据库(出版商)”最低求助积分说明 768365