Greenhouse extraction with high-resolution remote sensing imagery using fused fully convolutional network and object-oriented image analysis

计算机科学 遥感 分割 温室 人工智能 特征提取 图像分割 图像分辨率 计算机视觉 频道(广播) 卷积神经网络 电信 生物 地质学 园艺
作者
Hairong Ma,Tianjing Feng,Xiangcheng Shen,Zhiqing Luo,Ping-Ting Chen,Bo Guan
出处
期刊:Journal of Applied Remote Sensing [SPIE - International Society for Optical Engineering]
卷期号:15 (04) 被引量:4
标识
DOI:10.1117/1.jrs.15.046502
摘要

The wide application of agricultural greenhouses globally has brought economic benefits; however, it has also led to many environmental problems. The timely and accurate acquisition of greenhouse areas and distribution is valuable for authorities seeking to optimize regional agricultural management and mitigate environmental pollution. Automatic extraction of the greenhouses from high spatial resolution remote sensing (RS) imagery based on deep learning can reduce labor costs and improve operational efficiency to have better application prospects. In this paper, we propose a multi-channel fused fully convolutional network (FCN) optimized by the optimal scale object-oriented segmentation results for agricultural greenhouse extraction from high spatial resolution RS imagery. First, to make full use of remote sensing feature images of target objects and to not increase the complexity of the deep learning network, we constructed a decision-level fusion FCN network that can simultaneously input multiple remote sensing images for preliminary extraction of greenhouse. Second, to address a defect in the classical FCN network causing the easy loss of ground object details, we optimized the preliminary extraction results from FCN by the results of object-oriented segmentation. Finally, the optimized greenhouse extraction results were processed by the mathematical morphology, and the final extraction results were obtained. The experimental results demonstrate that: (1) Multi-channel fused FCN model could use the unique spectral characteristics of different ground objects. (2) Optimized initial extraction results from FCN based on the optimal scale object-oriented segmentation results could fully maintain the edge details of the greenhouse. Experimental results show that the proposed method can extract the greenhouse effectively. The precision and F value of our proposed method are 92.68% and 0.94.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵完成签到 ,获得积分10
1秒前
2秒前
丘比特应助刘思琪采纳,获得10
2秒前
HR112应助Jjj采纳,获得20
3秒前
5秒前
18166992885完成签到 ,获得积分10
5秒前
5秒前
爱笑的映冬完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
香蕉觅云应助不安的元霜采纳,获得10
8秒前
sxd发布了新的文献求助10
10秒前
wizard完成签到,获得积分10
10秒前
在水一方应助chu采纳,获得10
10秒前
Lee完成签到,获得积分10
11秒前
Parsec完成签到 ,获得积分10
11秒前
缥缈夏山完成签到,获得积分10
11秒前
科研通AI6应助flysky120采纳,获得10
12秒前
12秒前
megan发布了新的文献求助10
13秒前
JJJane完成签到,获得积分10
13秒前
14秒前
科研通AI6应助LZY采纳,获得30
15秒前
15秒前
Asphyxia完成签到 ,获得积分10
16秒前
萌宝发布了新的文献求助10
17秒前
刘思琪发布了新的文献求助10
17秒前
17秒前
王sy完成签到 ,获得积分10
18秒前
豆儿嘚小豆儿完成签到,获得积分10
18秒前
kaka.29完成签到 ,获得积分10
19秒前
瘦瘦麦片发布了新的文献求助10
19秒前
19秒前
酷炫的安雁完成签到 ,获得积分10
20秒前
清脆黑猫完成签到,获得积分10
20秒前
sxd完成签到,获得积分10
20秒前
12345完成签到 ,获得积分10
21秒前
iffee82发布了新的文献求助10
21秒前
共享精神应助剁手党采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317724
求助须知:如何正确求助?哪些是违规求助? 4460181
关于积分的说明 13877586
捐赠科研通 4350428
什么是DOI,文献DOI怎么找? 2389384
邀请新用户注册赠送积分活动 1383548
关于科研通互助平台的介绍 1352951