数学
幂迭代
迭代法
线性互补问题
互补性(分子生物学)
不动点迭代
趋同(经济学)
预处理程序
应用数学
模数
基质(化学分析)
线性方程组
数学优化
算法
非线性系统
数学分析
固定点
几何学
物理
生物
复合材料
经济
量子力学
材料科学
遗传学
经济增长
作者
Yu-Jiang Wu,Weihong Zhang,Ai‐Li Yang
标识
DOI:10.1080/03081087.2021.1991874
摘要
For the large sparse linear complementarity problem, by reformulating it as implicit fixed-point equations, we establish a modulus-based iteration method with the aid of an inexact non-alternating preconditioned matrix splitting iteration method used as an inner iteration to solve the module equations rapidly in each iteration step. The convergence properties of this method are carefully demonstrated under certain conditions. Numerical results, including the numbers of iteration steps and the computing times, validate that our method is superior to the other three iteration methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI