内分泌学
内科学
瘦素
福克斯O1
基因敲除
医学
炎症
安普克
脂肪因子
SOCS3
蛋白激酶B
蛋白激酶A
生物
细胞凋亡
信号转导
磷酸化
肥胖
细胞生物学
生物化学
癌症
抑制器
标识
DOI:10.1161/jaha.120.020667
摘要
Background Hypothalamic leptin-mediated signaling contributes to the exaggerated sympatho-excitation and increased blood pressure in obesity-associated hypertension. The aim of the study was to investigate the roles of energy-sensing enzyme sirtuin1 (Sirt1) and forkhead box protein O1 (FoxO1) on the hypothalamic leptin-mediated high sympathetic nerve activity and inflammation in obesity. Methods and Results Sprague Dawley rats were fed with high-fat diet (HFD) for 12 weeks. In vivo, the potential of Srit1 and FoxO1 in the sympathetic effects of leptin was investigated via siRNA injection to knockdown Sirt1 or FoxO1 gene in the arcuate nucleus (ARCN) of hypothalamus in rats. In vitro, the effects of Sirt1 or FoxO1 on leptin-mediated inflammation were observed in proopiomelanocortin (POMC) and microglial cells. Knockdown Sirt1 by siRNA significantly reduced the renal sympathetic nerve activity (RSNA) and blood pressure responses to leptin injection in the ARCN in the HFD rats. Conversely, knockdown FoxO1 significantly enhanced the RSNA and blood pressure responses to leptin injection in the HFD rats. Knockdown Sirt1 reduced the levels of pro-inflammatory cytokines interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), C1q/TNF-related protein-1 (CTRP1), and immune cell infiltration in the ARCN in the HFD rats. Knockdown FoxO1 significantly increased the level of IL-6 in the ARCN of HFD rats. In cultured hypothalamic POMC and microglial cells, knockdown Sirt1 significantly reduced leptin-induced IL-6 expression, affected the levels of AMP-activated protein kinase (AMPK) and serine/threonine-specific protein kinase (Akt). Knockdown FoxO1 significantly increased leptin-induced IL-6 in both POMC cells and microglial cells. Conclusions These data suggest that both Sirt1 and FoxO1 are the key modulators of leptin signaling in the hypothalamus contributed to the over sympathetic activation and inflammation in obesity.
科研通智能强力驱动
Strongly Powered by AbleSci AI