清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Exploring deep features and ECG attributes to detect cardiac rhythm classes

人工智能 计算机科学 模式识别(心理学) 人工神经网络 深度学习 主成分分析 特征提取 节奏 特征(语言学) 心律失常 心房颤动 医学 哲学 语言学 心脏病学 美学
作者
Fatma Murat,Özal Yıldırım,Muhammed Talo,Yakup Demir,Ru San Tan,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:232: 107473-107473 被引量:38
标识
DOI:10.1016/j.knosys.2021.107473
摘要

Arrhythmia is a condition characterized by perturbation of the regular rhythm of the heart. The development of computerized self-diagnostic systems for the detection of these arrhythmias is very popular, thanks to the machine learning models included in these systems, which eliminate the need for visual inspection of long electrocardiogram (ECG) recordings. In order to design a reliable, generalizable and highly accurate model, large number of subjects and arrhythmia classes are included in the training and testing phases of the model. In this study, an ECG dataset containing more than 10,000 subject records was used to train and diagnose arrhythmia. A deep neural network (DNN) model was used on the data set during the extraction of the features of the ECG inputs. Feature maps obtained from hierarchically placed layers in DNN were fed to various shallow classifiers. Principal component analysis (PCA) technique was used to reduce the high dimensions of feature maps. In addition to the morphological features obtained with DNN, various ECG features obtained from lead-II for rhythmic information are fused to increase the performance. Using the ECG features, an accuracy of 90.30% has been achieved. Using only deep features, this accuracy was increased to 97.26%. However, the accuracy was increased to 98.00% by fusing both deep and ECG-based features. Another important research subject of the study is the examination of the features obtained from DNN network both on a layer basis and at each training step. The findings show that the more abstract features obtained from the last layers of the DNN network provide high performance in shallow classifiers, and weight updates of DNN network also increases the performance of these classifiers. Hence, the study presents important findings on the fusion of deep features and shallow classifiers to improve the performance of the proposed system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萝卜猪完成签到,获得积分10
1分钟前
文文完成签到,获得积分10
1分钟前
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
文文发布了新的文献求助10
1分钟前
xingsixs完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助谨慎初蝶采纳,获得10
2分钟前
2分钟前
优雅山柏发布了新的文献求助10
2分钟前
顺利问玉完成签到 ,获得积分10
2分钟前
2分钟前
谨慎初蝶发布了新的文献求助10
2分钟前
谨慎初蝶完成签到,获得积分10
2分钟前
领导范儿应助12345采纳,获得50
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
通科研完成签到 ,获得积分10
3分钟前
ning_qing完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
12345发布了新的文献求助50
4分钟前
无情的友容完成签到 ,获得积分10
4分钟前
不秃燃的小老弟完成签到 ,获得积分10
4分钟前
苏苏爱学习完成签到 ,获得积分10
4分钟前
spy完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
勿奈何完成签到,获得积分10
5分钟前
6分钟前
jokerhoney完成签到,获得积分10
7分钟前
7分钟前
8分钟前
Sunny完成签到,获得积分10
8分钟前
keyan完成签到 ,获得积分10
8分钟前
一个小胖子完成签到,获得积分10
9分钟前
天凉王破完成签到 ,获得积分10
9分钟前
孙燕应助科研通管家采纳,获得10
9分钟前
葛力发布了新的文献求助10
9分钟前
鱼羊明完成签到 ,获得积分10
10分钟前
勤劳的斑马完成签到,获得积分10
10分钟前
10分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840848
求助须知:如何正确求助?哪些是违规求助? 3382744
关于积分的说明 10526417
捐赠科研通 3102602
什么是DOI,文献DOI怎么找? 1708918
邀请新用户注册赠送积分活动 822781
科研通“疑难数据库(出版商)”最低求助积分说明 773603