Do plaque-related factors affect the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system? Comparison with invasive coronary angiography

医学 狭窄 逻辑回归 放射科 心脏病学 内科学 冠状动脉疾病 计算机断层血管造影 神经组阅片室 冠状动脉造影 血管造影 介入放射学 神经学 心肌梗塞 精神科
作者
Jie Xu,Linli Chen,Xiaojia Wu,Chuanming Li,Guangyong Ai,Yuexi Liu,Bitong Tian,Dajing Guo,Fang Zheng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 1866-1878 被引量:5
标识
DOI:10.1007/s00330-021-08299-6
摘要

The aim of this study was to investigate the effects of plaque-related factors on the diagnostic performance of an artificial intelligence coronary-assisted diagnosis system (AI-CADS). Patients who underwent coronary computed tomography angiography (CCTA) and invasive coronary angiography (ICA) were retrospectively included in this study. The degree of stenosis in each vessel was collected from CCTA and ICA, and the information on plaque-related factors (plaque length, plaque type, and coronary artery calcium score (CAC)) of the vessels with plaques was collected from CCTA. In total, 1224 vessels in 306 patients (166 men; 65.7 ± 10.1 years) were analyzed. Of these, 391 vessels in 249 patients showed significant stenosis using ICA as the gold standard. Using per-vessel as the unit, the area under the curves of coronary stenosis ≥ 50% for AI-CADS, doctor, and AI-CADS + doctor was 0.764, 0.837, and 0.853, respectively. The accuracies in interpreting the degree of coronary stenosis were 56.0%, 68.1%, and 71.2%, respectively. Seven hundred fifty vessels showed plaques on CCTA; plaque type did not affect the interpretation results by AI-CADS (chi-square test: p = 0.0093; multiple logistic regression: p = 0.4937). However, the interpretation results for plaque length (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0061) and CACs (chi-square test: p < 0.0001; multiple logistic regression: p = 0.0001) were significantly different. AI-CADS has an ability to distinguish ≥ 50% coronary stenosis, but additional manual interpretation based on AI-CADS is necessary. The plaque length and CACs will affect the diagnostic performance of AI-CADS. • AI-CADS can help radiologists quickly assess CCTA and improve diagnostic confidence. • Additional manual interpretation on the basis of AI-CADS is necessary. • The plaque length and CACs will affect the diagnostic performance of AI-CADS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊绵好完成签到,获得积分10
刚刚
lancejade发布了新的文献求助10
3秒前
可爱的函函应助瘦瘦采纳,获得10
5秒前
百里冰香完成签到 ,获得积分10
6秒前
8秒前
Zhang完成签到 ,获得积分10
9秒前
温柔的柠檬完成签到 ,获得积分10
9秒前
9秒前
潇洒元菱发布了新的文献求助10
10秒前
13秒前
Yacon发布了新的文献求助10
13秒前
GFCFHGJK发布了新的文献求助10
13秒前
15秒前
小蘑菇应助zhengxd采纳,获得10
16秒前
16秒前
PEIQ发布了新的文献求助10
17秒前
yuyu发布了新的文献求助10
18秒前
LPL完成签到,获得积分10
18秒前
20秒前
酷炫若魔发布了新的文献求助10
20秒前
21秒前
科研通AI5应助健康的秋采纳,获得10
23秒前
勇者先享受生活完成签到 ,获得积分10
23秒前
GFCFHGJK完成签到,获得积分20
23秒前
王百万关注了科研通微信公众号
24秒前
务实的凝天完成签到,获得积分10
24秒前
斯文败类应助pan采纳,获得10
24秒前
拾光发布了新的文献求助10
26秒前
嘉123完成签到 ,获得积分10
26秒前
科研通AI5应助ll采纳,获得10
27秒前
RuiBigHead发布了新的文献求助10
28秒前
传奇3应助稳重向南采纳,获得10
29秒前
大模型应助淡蓝色采纳,获得10
31秒前
32秒前
32秒前
华仔应助husky采纳,获得10
32秒前
32秒前
Potato发布了新的文献求助10
33秒前
Ava应助阳光采纳,获得10
35秒前
Blue完成签到,获得积分10
35秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847391
求助须知:如何正确求助?哪些是违规求助? 3389942
关于积分的说明 10559669
捐赠科研通 3110405
什么是DOI,文献DOI怎么找? 1714243
邀请新用户注册赠送积分活动 825205
科研通“疑难数据库(出版商)”最低求助积分说明 775326