四环素
光催化
水溶液
材料科学
降级(电信)
羟基化
吸附
盐酸四环素
化学工程
催化作用
光化学
化学
有机化学
酶
工程类
抗生素
电信
生物化学
计算机科学
作者
Yanhong Li,Qifeng Zhang,Yi Lu,Zhiting Song,Changjiang Wang,Dongshuo Li,Xiao Tang,Xianju Zhou
标识
DOI:10.1016/j.ceramint.2021.09.215
摘要
The photocatalytic degradation of tetracycline in aqueous solution is a typical heterogeneous reaction, and thus the design of efficient photocatalysts for tetracycline degradation should revolve the process features of heterogeneous reaction closely. In the present work, TiO2-P/g-C3N4 composites with abundant surface hydroxyls were prepared by coupled g-C3N4 nanosheets with plasma treated TiO2 (TiO2-P) nanoparticles. The resultant TiO2-P/g-C3N4 as photocatalysts showed higher activity for the degradation of tetracycline in aqueous solution than g-C3N4, TiO2, TiO2-P and TiO2/g-C3N4 under visible light irradiation. The better activity of TiO2-P/g-C3N4 photocatalysts for tetracycline degradation could be ascribed to the good synergy between TiO2-P and g-C3N4. Specifically, due to the presence of surface hydroxyls on TiO2-P, the tetracycline adsorption activity, electrons-holes separation property as well as H2O2 activating activity of TiO2-P/g-C3N4 during tetracycline degradation were improved. By integrating the property of g-C3N4 photocatalyst in H2O2 production, as well as the property of TiO2-P in activating H2O2 into •OH and •O2-, efficient photo-Fenton degradation of tetracycline was achieved in the TiO2-P/g-C3N4 photocatalytic system. Our study on TiO2/g-C3N4 composite photocatalyst provides helpful inspiration to design photocatalysts with high-activity for the photo-Fenton degradation of organic pollutants.
科研通智能强力驱动
Strongly Powered by AbleSci AI