Mean parotid dose prediction model using machine learning regression method for intensity-modulated radiotherapy in head and neck cancer

多重共线性 方差膨胀系数 数学 四分位数 统计 核医学 线性回归 均方误差 回归分析 医学 置信区间
作者
C P Ranjith,Niyas Puzhakkal,MP Arunkrishnan,Vysakh Raveendran,M. P. Irfad,K. S. Vijayagopal,S Jayashanker
出处
期刊:Medical Dosimetry [Elsevier BV]
卷期号:46 (3): 283-288 被引量:9
标识
DOI:10.1016/j.meddos.2021.02.003
摘要

Abstract

Parotids are considered one of the major organs at risk in Head and Neck (HN) intensity-modulated radiotherapy (IMRT). Achieving proper target coverage with reduced mean parotid dose demands an elaborate time-consuming IMRT plan optimization. A parotid mean dose prediction model based on a machine-learning linear regression was developed and validated in this study. The model was developed using independent variables, such as parotid to PTV overlapping volume, dose coverage of the overlapping PTV, the ratio of overlapping parotid volume to total parotid volume, and volume of parotid overlapping with isotopically expanded PTV contours. The Pearson correlation coefficients between these independent variables and the mean parotid dose were calculated. Multicollinearity of the independent variables was checked by calculating the Variance Inflation Factor (VIF). All variables are having VIF less than ten were taken for the model. Fifty IMRT patient plans were used to develop the model. The mean parotid dose predicted by the model was in good agreement with the obtained mean parotid dose. The model is having a Root Mean Square Error (RMSE) of 2.89 Gy and an R-square of 0.7695. The model was successfully validated using the fivefold cross-validation method, resulting R-square value of 0.6179 and an RMSE of 2.93 Gy. The normality of the model's residuals was tested using Quartile-Quartile (Q-Q) plot and Shapiro Wilk test (p = 0.996, for null hypothesis ``residuals were normally distributed''). The data points in the Q-Q plot are falling approximately along the reference line. This model can be used in clinics to help the planner in the preplanning phase for efficient plan optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
哈哈完成签到 ,获得积分20
2秒前
sky驳回了张先生应助
3秒前
3秒前
4秒前
淡然宛凝完成签到 ,获得积分10
6秒前
大模型应助Pauline采纳,获得10
6秒前
无花果应助轻松冰淇淋采纳,获得10
7秒前
zmy发布了新的文献求助10
9秒前
专注巨人发布了新的文献求助10
10秒前
水解小博完成签到,获得积分10
11秒前
CodeCraft应助ZHANGMANLI0422采纳,获得30
11秒前
11秒前
xiaocui完成签到,获得积分10
11秒前
Tiome发布了新的文献求助10
12秒前
完美成协发布了新的文献求助10
12秒前
12秒前
戴士杰686完成签到,获得积分10
13秒前
wad1314发布了新的文献求助10
13秒前
13秒前
15秒前
16秒前
JNL发布了新的文献求助10
16秒前
ananan完成签到,获得积分20
17秒前
科目三应助果粒多采纳,获得10
19秒前
HarbinDing发布了新的文献求助10
19秒前
21秒前
wanci应助wad1314采纳,获得10
21秒前
多情紫霜发布了新的文献求助30
22秒前
24秒前
25秒前
26秒前
ananan发布了新的文献求助10
26秒前
顾矜应助zj采纳,获得10
26秒前
难过水池给难过水池的求助进行了留言
26秒前
诗图完成签到,获得积分10
27秒前
Amelia发布了新的文献求助10
27秒前
HarbinDing完成签到,获得积分10
27秒前
27秒前
李健应助能干的小刺猬采纳,获得10
28秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126788
求助须知:如何正确求助?哪些是违规求助? 3664322
关于积分的说明 11594319
捐赠科研通 3363677
什么是DOI,文献DOI怎么找? 1848369
邀请新用户注册赠送积分活动 912326
科研通“疑难数据库(出版商)”最低求助积分说明 827992