Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study

人工智能 数据科学 计算机科学
作者
Duoru Lin,Jianhao Xiong,Congxin Liu,Lanqin Zhao,Zhongwen Li,Shanshan Yu,Xiaohang Wu,Zongyuan Ge,Xinyue Hu,Bin Wang,Meng Fu,Xin Zhao,Xin Wang,Yi Zhu,Chuan Chen,Tao Li,Yonghao Li,Wenbin Wei,Mingwei Zhao,Jianqiao Li
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (8): e486-e495 被引量:122
标识
DOI:10.1016/s2589-7500(21)00086-8
摘要

BackgroundMedical artificial intelligence (AI) has entered the clinical implementation phase, although real-world performance of deep-learning systems (DLSs) for screening fundus disease remains unsatisfactory. Our study aimed to train a clinically applicable DLS for fundus diseases using data derived from the real world, and externally test the model using fundus photographs collected prospectively from the settings in which the model would most likely be adopted.MethodsIn this national real-world evidence study, we trained a DLS, the Comprehensive AI Retinal Expert (CARE) system, to identify the 14 most common retinal abnormalities using 207 228 colour fundus photographs derived from 16 clinical settings with different disease distributions. CARE was internally validated using 21 867 photographs and externally tested using 18 136 photographs prospectively collected from 35 real-world settings across China where CARE might be adopted, including eight tertiary hospitals, six community hospitals, and 21 physical examination centres. The performance of CARE was further compared with that of 16 ophthalmologists and tested using datasets with non-Chinese ethnicities and previously unused camera types. This study was registered with ClinicalTrials.gov, NCT04213430, and is currently closed.FindingsThe area under the receiver operating characteristic curve (AUC) in the internal validation set was 0·955 (SD 0·046). AUC values in the external test set were 0·965 (0·035) in tertiary hospitals, 0·983 (0·031) in community hospitals, and 0·953 (0·042) in physical examination centres. The performance of CARE was similar to that of ophthalmologists. Large variations in sensitivity were observed among the ophthalmologists in different regions and with varying experience. The system retained strong identification performance when tested using the non-Chinese dataset (AUC 0·960, 95% CI 0·957–0·964 in referable diabetic retinopathy).InterpretationOur DLS (CARE) showed satisfactory performance for screening multiple retinal abnormalities in real-world settings using prospectively collected fundus photographs, and so could allow the system to be implemented and adopted for clinical care.FundingThis study was funded by the National Key R&D Programme of China, the Science and Technology Planning Projects of Guangdong Province, the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province, and the Fundamental Research Funds for the Central Universities.TranslationFor the Chinese translation of the abstract see Supplementary Materials section.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
orixero应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得50
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得30
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
周杰伦完成签到,获得积分10
6秒前
smile发布了新的文献求助10
7秒前
田様应助阿萱采纳,获得10
8秒前
10秒前
fei菲飞完成签到,获得积分10
11秒前
锅实验完成签到 ,获得积分10
13秒前
大个应助通义千问采纳,获得10
14秒前
Yangaaa发布了新的文献求助10
16秒前
junjun2011完成签到,获得积分10
16秒前
刚刚发布了新的文献求助10
19秒前
19秒前
感动翠完成签到,获得积分10
20秒前
21秒前
22秒前
幽默断秋关注了科研通微信公众号
22秒前
通义千问发布了新的文献求助10
25秒前
26秒前
神山识完成签到,获得积分10
29秒前
29秒前
29秒前
越听初完成签到,获得积分10
29秒前
正直完成签到,获得积分10
33秒前
Henry完成签到,获得积分10
34秒前
34秒前
文艺的凡梦完成签到,获得积分10
35秒前
37秒前
gt完成签到,获得积分10
38秒前
顾家老攻发布了新的文献求助10
39秒前
852应助拼搏的以珊采纳,获得10
40秒前
orixero应助abletoo采纳,获得20
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4725414
求助须知:如何正确求助?哪些是违规求助? 4083295
关于积分的说明 12628297
捐赠科研通 3789474
什么是DOI,文献DOI怎么找? 2092797
邀请新用户注册赠送积分活动 1118577
科研通“疑难数据库(出版商)”最低求助积分说明 995072