Combined cCTA and TAVR Planning for Ruling Out Significant CAD

医学 冠状动脉疾病 放射科 心脏病学 内科学 阀门更换 部分流量储备 血管造影 计算机辅助设计 狭窄 计算机断层血管造影 冠状动脉造影 心肌梗塞 工程制图 工程类
作者
Robin F. Gohmann,Konrad Pawelka,Patrick Seitz,Nicolas Majunke,Linda Heiser,Katharina Renatus,Steffen Desch,Philipp Lauten,David Holzhey,Thilo Noack,Johannes Wilde,Philipp Kiefer,Christian Krieghoff,Christian Lücke,Sebastian Gottschling,Sebastian Ebel,Michael A. Borger,Hölger Thiele,Christoph Panknin,Matthias Horn
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:15 (3): 476-486 被引量:40
标识
DOI:10.1016/j.jcmg.2021.09.013
摘要

The purpose of this study was to analyze the ability of machine-learning (ML)-based computed tomography (CT)-derived fractional flow reserve (CT-FFR) to further improve the diagnostic performance of coronary CT angiography (cCTA) for ruling out significant coronary artery disease (CAD) during pre-transcatheter aortic valve replacement (TAVR) evaluation in patients with a high pre-test probability for CAD.CAD is a frequent comorbidity in patients undergoing TAVR. Current guidelines recommend its assessment before TAVR. If significant CAD can be excluded on cCTA, invasive coronary angiography (ICA) may be avoided. Although cCTA is a very sensitive test, it is limited by relatively low specificity and positive predictive value, particularly in high-risk patients.Overall, 460 patients (age 79.6 ± 7.4 years) undergoing pre-TAVR CT were included and examined with an electrocardiogram-gated CT scan of the heart and high-pitch scan of the vascular access route. Images were evaluated for significant CAD. Patients routinely underwent ICA (388/460), which was omitted at the discretion of the local Heart Team if CAD could be effectively ruled out on cCTA (72/460). CT examinations in which CAD could not be ruled out (CAD+) (n = 272) underwent additional ML-based CT-FFR.ML-based CT-FFR was successfully performed in 79.4% (216/272) of all CAD+ patients and correctly reclassified 17 patients as CAD negative. CT-FFR was not feasible in 20.6% because of reduced image quality (37/56) or anatomic variants (19/56). Sensitivity, specificity, positive predictive value, and negative predictive value were 94.9%, 52.0%, 52.2%, and 94.9%, respectively. The additional evaluation with ML-based CT-FFR increased accuracy by Δ+3.4% (CAD+: Δ+6.0%) and raised the total number of examinations negative for CAD to 43.9% (202/460).ML-based CT-FFR may further improve the diagnostic performance of cCTA by correctly reclassifying a considerable proportion of patients with morphological signs of obstructive CAD on cCTA during pre-TAVR evaluation. Thereby, CT-FFR has the potential to further reduce the need for ICA in this challenging elderly group of patients before TAVR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo发布了新的文献求助10
2秒前
Lighters完成签到 ,获得积分10
6秒前
穆青完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
小维完成签到,获得积分20
10秒前
科目三应助Sherrazi12采纳,获得10
11秒前
桐桐应助Zn中毒采纳,获得10
11秒前
从容凝雁发布了新的文献求助10
12秒前
14秒前
Peix发布了新的文献求助10
14秒前
华仔应助鸡蛋花干夹馍采纳,获得10
14秒前
16秒前
16秒前
木木发布了新的文献求助10
17秒前
DrLiu完成签到,获得积分10
20秒前
22秒前
ww完成签到,获得积分10
26秒前
你说的完成签到 ,获得积分10
28秒前
30秒前
33秒前
wanci应助彭思凯采纳,获得30
33秒前
id完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
36秒前
36秒前
lllhw发布了新的文献求助10
37秒前
曾经的妍完成签到,获得积分10
38秒前
阳和启蛰发布了新的文献求助10
38秒前
Tetmqq发布了新的文献求助10
40秒前
Peix完成签到,获得积分10
41秒前
ff不吃芹菜完成签到 ,获得积分10
43秒前
不配.应助辛勤的刺猬采纳,获得50
46秒前
RadioMars应助科研通管家采纳,获得10
47秒前
RadioMars应助科研通管家采纳,获得10
47秒前
斯文败类应助科研通管家采纳,获得30
47秒前
liushikai应助科研通管家采纳,获得20
47秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
JamesPei应助科研通管家采纳,获得10
47秒前
所所应助科研通管家采纳,获得10
47秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4260140
求助须知:如何正确求助?哪些是违规求助? 3793006
关于积分的说明 11896425
捐赠科研通 3440633
什么是DOI,文献DOI怎么找? 1888248
邀请新用户注册赠送积分活动 938978
科研通“疑难数据库(出版商)”最低求助积分说明 844362