Magnetic nanoparticles with dendrimer-assisted boronate avidity for the selective enrichment of trace glycoproteins

化学 贪婪 硼酸 树枝状大分子 糖蛋白 组合化学 苯硼酸 四聚体 生物化学 生物 抗体 催化作用 免疫学
作者
Heye Wang,Zijun Bie,Chenchen Lü,Zhen Liu
出处
期刊:Chemical Science [Royal Society of Chemistry]
卷期号:4 (11): 4298-4298 被引量:196
标识
DOI:10.1039/c3sc51623g
摘要

Boronic acid-functionalized materials have been the subject of increasing attention in recent years due to their capability in the facile selective extraction of glycoproteins. However, boronic acids are associated with weak binding affinity, and it is thereby difficult for boronate affinity materials to extract glycoproteins of low concentration. Here we present for the first time a boronate avidity material, dendrimeric boronic acid-functionalized magnetic nanoparticles, with significantly enhanced binding strength towards glycoproteins. Due to the dendrimer-assisted multivalent synergistic binding, the boronate avidity material exhibited dissociation constants of 10−5 to 10−6 M towards glycoproteins, which are 3–4 orders of magnitude higher than the affinities of single boronic acid binding. Such an avidity enabled the selective extraction of trace glycoproteins; an extractable concentration as low as 2 × 10−14 M was demonstrated. Meanwhile, the boronate avidity material was tolerant of the interference of abundant competing sugars. Moreover, the dendrimeric boronic acid-functionalized magnetic nanoparticles exhibited two additional advantages: high binding capacity and fast binding/desorption speed. Due to these favourable features, the selective enrichment of trace glycoproteins by the boronate avidity material became not only possible but also efficient. Efficient enrichment of trace glycoproteins from human saliva was demonstrated. The dendrimer-assisted synergistic binding strategy is also applicable to other types of boronic acid-functionalized materials and other types of functionalized materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健壮的翠安完成签到,获得积分10
刚刚
平安喜乐完成签到,获得积分10
刚刚
zzznznnn发布了新的文献求助10
1秒前
1秒前
大个应助dawei采纳,获得10
1秒前
jinjinjin发布了新的文献求助10
1秒前
1秒前
1秒前
丘比特应助gs采纳,获得10
2秒前
2秒前
天天快乐应助欢喜的如蓉采纳,获得30
3秒前
科目三应助jiecao采纳,获得10
4秒前
科研通AI5应助小東采纳,获得10
4秒前
栗子完成签到,获得积分10
5秒前
5秒前
NN应助爱听歌忆枫采纳,获得10
5秒前
5秒前
gxqqqqqqq完成签到,获得积分10
5秒前
666完成签到,获得积分10
5秒前
5秒前
咕噜咕噜完成签到,获得积分10
6秒前
顾矜应助小奋青采纳,获得10
6秒前
歪比八不发布了新的文献求助10
6秒前
6秒前
18216781882发布了新的文献求助10
6秒前
7秒前
7秒前
落寒完成签到,获得积分10
7秒前
8秒前
8秒前
小東完成签到,获得积分10
8秒前
ZL发布了新的文献求助10
8秒前
冰箱发布了新的文献求助10
9秒前
9秒前
挚zhi完成签到,获得积分20
9秒前
科研通AI5应助ww采纳,获得10
9秒前
RUI完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Single Element Semiconductors: Properties and Devices 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
English language teaching materials : theory and practice 200
Parallel Optimization 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835549
求助须知:如何正确求助?哪些是违规求助? 3377872
关于积分的说明 10500941
捐赠科研通 3097454
什么是DOI,文献DOI怎么找? 1705830
邀请新用户注册赠送积分活动 820717
科研通“疑难数据库(出版商)”最低求助积分说明 772219