局部二进制模式
重采样
人工智能
模式识别(心理学)
无症状的
计算机科学
分类器(UML)
支持向量机
计算机视觉
医学
内科学
图像(数学)
直方图
作者
U. Rajendra Acharya,S. Vinitha Sree,Muthu Rama Krishnan Mookiah,Luca Saba,Filippo Molinari,Shoaib Shafique,Andrew Nicolaides,Jasjit S. Suri
标识
DOI:10.1109/embc.2012.6345964
摘要
In this work, we present a Computer Aided Diagnostic (CAD) technique (a class of Atheromatic systems) that classifies the automatically segmented carotid far wall Intima-Media Thickness (IMT) regions along the common carotid artery into symptomatic and asymptomatic classes. We extracted texture features based on Local Binary Patterns (LBP) and Law's Texture Energy (LTE) and used the significant features to train and test the Support Vector Machine classifier. We developed the classifiers using three-fold stratified cross validation data resampling technique on 342 IMT wall regions. An accuracy of 89.5% was registered. Thus, the proposed technique is accurate, robust, non-invasive, fast, objective, and cost-effective, and hence, will add more value to the existing carotid plaque diagnostics protocol.
科研通智能强力驱动
Strongly Powered by AbleSci AI