Some remarks on protein attribute prediction and pseudo amino acid composition

伪氨基酸组成 水准点(测量) 蛋白质测序 计算机科学 氨基酸 序列(生物学) 计算生物学 步伐 数据挖掘 生物 肽序列 遗传学 基因 大地测量学 地理 二肽
作者
Kuo‐Chen Chou
出处
期刊:Journal of Theoretical Biology [Elsevier BV]
卷期号:273 (1): 236-247 被引量:1220
标识
DOI:10.1016/j.jtbi.2010.12.024
摘要

With the accomplishment of human genome sequencing, the number of sequence-known proteins has increased explosively. In contrast, the pace is much slower in determining their biological attributes. As a consequence, the gap between sequence-known proteins and attribute-known proteins has become increasingly large. The unbalanced situation, which has critically limited our ability to timely utilize the newly discovered proteins for basic research and drug development, has called for developing computational methods or high-throughput automated tools for fast and reliably identifying various attributes of uncharacterized proteins based on their sequence information alone. Actually, during the last two decades or so, many methods in this regard have been established in hope to bridge such a gap. In the course of developing these methods, the following things were often needed to consider: (1) benchmark dataset construction, (2) protein sample formulation, (3) operating algorithm (or engine), (4) anticipated accuracy, and (5) web-server establishment. In this review, we are to discuss each of the five procedures, with a special focus on the introduction of pseudo amino acid composition (PseAAC), its different modes and applications as well as its recent development, particularly in how to use the general formulation of PseAAC to reflect the core and essential features that are deeply hidden in complicated protein sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvshiwen完成签到,获得积分10
刚刚
完美世界应助cuifeng采纳,获得30
刚刚
suiyi发布了新的文献求助10
1秒前
科研通AI5应助笨笨忘幽采纳,获得10
2秒前
4秒前
传奇3应助AKK采纳,获得10
4秒前
7秒前
HY完成签到 ,获得积分10
7秒前
李健应助leoluo采纳,获得10
8秒前
9秒前
深情安青应助宋晓静采纳,获得10
9秒前
Nancy发布了新的文献求助10
9秒前
Duke_ethan完成签到,获得积分10
12秒前
12秒前
tcf完成签到,获得积分10
13秒前
纪间完成签到,获得积分10
14秒前
卓初露完成签到 ,获得积分10
19秒前
20秒前
oysp完成签到,获得积分10
22秒前
25秒前
无花果应助upandcoming采纳,获得10
25秒前
GreenT完成签到,获得积分10
26秒前
LL发布了新的文献求助10
26秒前
_ban完成签到 ,获得积分10
26秒前
Solarenergy完成签到,获得积分0
30秒前
xieji发布了新的文献求助10
31秒前
小文殊完成签到 ,获得积分10
31秒前
31秒前
32秒前
32秒前
蓝桉发布了新的文献求助30
36秒前
科研通AI5应助fjyk采纳,获得30
36秒前
AKK发布了新的文献求助10
37秒前
leoluo发布了新的文献求助10
37秒前
zlx发布了新的文献求助10
37秒前
41秒前
duotianzhiyi完成签到,获得积分10
42秒前
45秒前
hcjxj完成签到,获得积分10
45秒前
zlx完成签到,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522