扩散
先验与后验
数学
伽辽金法
应用数学
非线性系统
牛顿流体
紧凑空间
流体力学
分解
统计物理学
数学分析
经典力学
物理
机械
生态学
哲学
认识论
量子力学
生物
热力学
作者
Abdelghafour Atlas,Mostafa Bendahmane,Fahd Karami,Driss Meskine,Mohamed Zagour
标识
DOI:10.1016/j.apm.2019.11.036
摘要
In this article we propose a nonlocal cross-diffusion–fluid system describing the dynamics of multiple interacting populations living in a Newtonian fluid. First, we derive our nonlocal cross-diffusion–fluid system from a nonlocal kinetic-fluid model by the micro-macro decomposition method. Second, we prove the existence of weak solutions for the proposed system by applying the nonlinear Galerkin method with a priori estimates and compactness arguments. On the basis of micro-macro decomposition, we propose and develop an asymptotic-preserving numerical scheme. Finally, we discuss the computational results for the proposed system.
科研通智能强力驱动
Strongly Powered by AbleSci AI