Multivariate Variational Mode Decomposition

多元统计 数学 多元分析 计算机科学 单变量 算法 统计
作者
Naveed ur Rehman,Hania Aftab
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:67 (23): 6039-6052 被引量:512
标识
DOI:10.1109/tsp.2019.2951223
摘要

In this paper, a generic extension of variational mode decomposition (VMD)\nalgorithm for multivariate or multichannel data sets is presented. We first\ndefine a model for multivariate modulated oscillations that is based on the\npresence of a joint or common frequency component among all channels of input\ndata. Using that model for multivariate oscillations, we construct a\nvariational optimization problem that aims to extract an ensemble of\nband-limited modes containing inherent multivariate modulated oscillations\npresent in multivariate input signal. The cost function to be minimized is the\nsum of bandwidths of all signal modes across all input data channels, which is\na generic extension of the cost function used in standard VMD to multivariate\ndata. Minimization of the resulting variational model is achieved through the\nalternate direction method of multipliers (ADMM) approach. That yields an\noptimal set of multivariate modes in terms of narrow bandwidth and\ncorresponding center frequencies that are assumed to be commonly present among\nall channels of a multivariate modulated oscillation. We demonstrate the\neffectiveness of the proposed method through results obtained from extensive\nsimulations involving test (synthetic) and real world multivariate data sets.\nSpecifically, we focus on the ability of the proposed method to yield joint\noscillatory modes in multivariate data which is a prerequisite in many real\nworld applications involving nonstationary multivariate data. We also highlight\nthe utility of the proposed method in two real world applications which include\nthe separation of alpha rhythms in multivariate electroencephalogram (EEG) data\nand the decomposition of bivariate cardiotocographic signals that consist of\nfetal heart rate and maternal uterine contraction (FHR-UC) as its two channels.\n
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一发布了新的文献求助10
刚刚
刚刚
lulu发布了新的文献求助10
刚刚
淡淡宇宇宝宝完成签到,获得积分10
1秒前
2秒前
好嘞发布了新的文献求助10
3秒前
3秒前
3秒前
cong完成签到 ,获得积分10
4秒前
WWXWWX发布了新的文献求助10
4秒前
5秒前
小马甲应助killer采纳,获得10
5秒前
5秒前
9℃发布了新的文献求助10
5秒前
脆脆鲨发布了新的文献求助10
6秒前
yuan发布了新的文献求助10
7秒前
7秒前
Akim应助黄任行采纳,获得10
7秒前
spark发布了新的文献求助10
8秒前
8秒前
xiaomei完成签到,获得积分10
8秒前
8秒前
在水一方应助玩家X采纳,获得10
8秒前
慕洋完成签到,获得积分10
9秒前
9秒前
qingfengnai完成签到,获得积分10
11秒前
孤灯剑客完成签到,获得积分10
11秒前
英姑应助好嘞采纳,获得10
11秒前
天天快乐应助王文丰采纳,获得10
11秒前
11秒前
123完成签到,获得积分10
12秒前
慕洋发布了新的文献求助10
12秒前
乾巧完成签到,获得积分10
12秒前
幸福的乐曲完成签到,获得积分10
12秒前
虚心的猴子完成签到,获得积分10
12秒前
blue发布了新的文献求助10
12秒前
13秒前
14秒前
15秒前
Wait发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474749
求助须知:如何正确求助?哪些是违规求助? 4576493
关于积分的说明 14358370
捐赠科研通 4504478
什么是DOI,文献DOI怎么找? 2468288
邀请新用户注册赠送积分活动 1455826
关于科研通互助平台的介绍 1429748