Multivariate Variational Mode Decomposition

多元统计 数学 多元分析 计算机科学 单变量 算法 统计
作者
Naveed ur Rehman,Hania Aftab
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:67 (23): 6039-6052 被引量:450
标识
DOI:10.1109/tsp.2019.2951223
摘要

In this paper, a generic extension of variational mode decomposition (VMD) algorithm for multivariate or multichannel data sets is presented. We first define a model for multivariate modulated oscillations that is based on the presence of a joint or common frequency component among all channels of input data. Using that model for multivariate oscillations, we construct a variational optimization problem that aims to extract an ensemble of band-limited modes containing inherent multivariate modulated oscillations present in multivariate input signal. The cost function to be minimized is the sum of bandwidths of all signal modes across all input data channels, which is a generic extension of the cost function used in standard VMD to multivariate data. Minimization of the resulting variational model is achieved through the alternate direction method of multipliers (ADMM) approach. That yields an optimal set of multivariate modes in terms of narrow bandwidth and corresponding center frequencies that are assumed to be commonly present among all channels of a multivariate modulated oscillation. We demonstrate the effectiveness of the proposed method through results obtained from extensive simulations involving test (synthetic) and real world multivariate data sets. Specifically, we focus on the ability of the proposed method to yield joint oscillatory modes in multivariate data which is a prerequisite in many real world applications involving nonstationary multivariate data. We also highlight the utility of the proposed method in two real world applications which include the separation of alpha rhythms in multivariate electroencephalogram (EEG) data and the decomposition of bivariate cardiotocographic signals that consist of fetal heart rate and maternal uterine contraction (FHR-UC) as its two channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
正直的雨双完成签到,获得积分10
刚刚
刚刚
传奇3应助动不动就吃胖采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
bosslin发布了新的文献求助10
1秒前
Sue发布了新的文献求助10
1秒前
peipeipei完成签到 ,获得积分20
2秒前
桐桐应助如意剑身采纳,获得10
2秒前
3秒前
勤恳的珊发布了新的文献求助10
3秒前
3秒前
脑洞疼应助白宇采纳,获得10
4秒前
4秒前
康康完成签到,获得积分10
4秒前
淡淡的士晋完成签到,获得积分10
4秒前
hebishan完成签到,获得积分10
4秒前
4秒前
尔信完成签到 ,获得积分10
5秒前
夏笠发布了新的文献求助10
5秒前
酷波er应助cheng4046采纳,获得10
5秒前
研友_LN7x6n发布了新的文献求助10
7秒前
7秒前
脑洞疼应助禛禛采纳,获得10
8秒前
9秒前
一颗橙子发布了新的文献求助10
9秒前
9秒前
高挑的洋葱完成签到,获得积分10
9秒前
天天快乐应助何事惊慌采纳,获得10
11秒前
量子星尘发布了新的文献求助10
11秒前
柳絮吹雪发布了新的文献求助10
15秒前
yxl完成签到,获得积分10
16秒前
凌灵翎发布了新的文献求助10
16秒前
17秒前
panpan发布了新的文献求助10
18秒前
wanci应助鼠李采纳,获得10
18秒前
19秒前
禛禛完成签到,获得积分20
19秒前
20秒前
Akim应助猪猪hero采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
ESDU TM 218 An example of air data pressure correction with a dependency on engine power settings 400
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5035867
求助须知:如何正确求助?哪些是违规求助? 4268837
关于积分的说明 13308595
捐赠科研通 4079629
什么是DOI,文献DOI怎么找? 2231666
邀请新用户注册赠送积分活动 1239798
关于科研通互助平台的介绍 1165743