Machine learning reveals complex behaviours in optically trapped particles

光学镊子 叠加原理 光力学 生物光子学 物理 航程(航空) 光学 计算机科学 生物系统 光子学 航空航天工程 工程类 量子力学 生物 谐振器
作者
Isaac C. D. Lenton,Giovanni Volpe,Alexander B. Stilgoe,Timo A. Nieminen,Halina Rubinsztein‐Dunlop
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:1 (4): 045009-045009 被引量:25
标识
DOI:10.1088/2632-2153/abae76
摘要

Since their invention in the 1980s [1], optical tweezers have found a wide range of applications, from biophotonics and mechanobiology to microscopy and optomechanics [2, 3, 4, 5]. Simulations of the motion of microscopic particles held by optical tweezers are often required to explore complex phenomena and to interpret experimental data [6, 7, 8, 9]. For the sake of computational efficiency, these simulations usually model the optical tweezers as an harmonic potential [10, 11]. However, more physically-accurate optical-scattering models [12, 13, 14, 15] are required to accurately model more onerous systems; this is especially true for optical traps generated with complex fields [16, 17, 18, 19]. Although accurate, these models tend to be prohibitively slow for problems with more than one or two degrees of freedom (DoF) [20], which has limited their broad adoption. Here, we demonstrate that machine learning permits one to combine the speed of the harmonic model with the accuracy of optical-scattering models. Specifically, we show that a neural network can be trained to rapidly and accurately predict the optical forces acting on a microscopic particle. We demonstrate the utility of this approach on two phenomena that are prohibitively slow to accurately simulate otherwise: the escape dynamics of swelling microparticles in an optical trap, and the rotation rates of particles in a superposition of beams with opposite orbital angular momenta. Thanks to its high speed and accuracy, this method can greatly enhance the range of phenomena that can be efficiently simulated and studied.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西部菱斑响尾蛇完成签到,获得积分10
刚刚
KKKK发布了新的文献求助10
刚刚
无花果应助FULAWEN采纳,获得10
1秒前
上官完成签到 ,获得积分10
1秒前
我爱陶子完成签到 ,获得积分10
1秒前
帅气冰蝶完成签到,获得积分10
1秒前
Uranus发布了新的文献求助30
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
豆豆关注了科研通微信公众号
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得30
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
彭于彦祖应助科研通管家采纳,获得150
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
李爱国应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
彭于彦祖应助科研通管家采纳,获得150
3秒前
orixero应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Yenom发布了新的文献求助10
3秒前
彭于彦祖应助科研通管家采纳,获得150
3秒前
所所应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
彭于彦祖应助科研通管家采纳,获得150
4秒前
要减肥芮完成签到,获得积分10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
Charial发布了新的文献求助10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095779
求助须知:如何正确求助?哪些是违规求助? 4308719
关于积分的说明 13425216
捐赠科研通 4135630
什么是DOI,文献DOI怎么找? 2265681
邀请新用户注册赠送积分活动 1268964
关于科研通互助平台的介绍 1205022