Intelligent Fault Diagnosis for Chemical Processes Using Deep Learning Multimodel Fusion

计算机科学 人工智能 深度学习 卷积神经网络 断层(地质) 特征提取 过程(计算) 人工神经网络 模式识别(心理学) 感知器 特征(语言学) 机器学习 语言学 哲学 地震学 地质学 操作系统
作者
Nan Wang,Fan Yang,Ridong Zhang,Furong Gao
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (7): 7121-7135 被引量:61
标识
DOI:10.1109/tcyb.2020.3038832
摘要

Deep learning technology has been widely used in fault diagnosis for chemical processes. However, most deep learning technologies currently adopted only use a single network stack or a certain network stack with multilayer perceptron (MLP) behind it. Compared with traditional fault diagnosis technologies, this method has made progress in both the diagnosis accuracy and speed, but due to the limited performance of a single network, the accuracy or speed cannot meet the requirements to the greatest extent. In order to overcome such problems, this article proposes a fault diagnosis method using deep learning multimodel fusion. Different from previous deep learning diagnosis methods, this method uses long short-term memory (LSTM) and convolutional neural network (CNN) to extract features separately. The extracted features are then fused and MLP is taken as the input for further feature compression and extraction, and finally the diagnosis results will be obtained. LSTM has long-term memory capabilities, the extracted features have temporal characteristics, and CNNs have a good effect on the extraction of spatial features. The proposed method integrates these two aspects for diagnosis such that the features finally extracted by the network have both spatial and temporal characteristics, thereby improving the network's diagnostic performance. Finally, a TE chemical process and an industrial coking furnace process are taken for simulation testing. It is proved that the performance of this method is superior to existing deep learning fault diagnosis methods with simple sequential stacking for unilateral feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阝火火发布了新的文献求助10
1秒前
羊觅夏发布了新的文献求助10
1秒前
大模型应助Ldq采纳,获得10
1秒前
Lucas应助Ldq采纳,获得10
1秒前
小蘑菇应助Ldq采纳,获得10
2秒前
科研通AI2S应助Ldq采纳,获得10
2秒前
希望天下0贩的0应助Ldq采纳,获得10
2秒前
隐形曼青应助Ldq采纳,获得10
2秒前
ding应助Ldq采纳,获得10
2秒前
汉堡包应助Ldq采纳,获得10
2秒前
SciGPT应助林小鱼采纳,获得10
2秒前
爆米花应助Ldq采纳,获得10
2秒前
共享精神应助Ldq采纳,获得10
2秒前
4秒前
Django完成签到,获得积分20
5秒前
段非非完成签到,获得积分10
5秒前
玥越发布了新的文献求助10
6秒前
6秒前
无辜的星星完成签到,获得积分10
6秒前
7秒前
7秒前
FashionBoy应助ocean采纳,获得20
7秒前
7秒前
7秒前
xi完成签到,获得积分10
7秒前
777发布了新的文献求助10
7秒前
老实幻姬发布了新的文献求助10
7秒前
9秒前
CodeCraft应助leicaixia采纳,获得30
9秒前
我是老大应助羊觅夏采纳,获得10
9秒前
Owen应助空白采纳,获得10
10秒前
10秒前
Angel完成签到,获得积分10
11秒前
rnanoda发布了新的文献求助10
12秒前
桐桐应助zjy采纳,获得30
12秒前
木秀发布了新的文献求助30
12秒前
可爱曼青发布了新的文献求助10
12秒前
13秒前
金鱼的眼泪完成签到,获得积分20
13秒前
bbbjddd发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5329117
求助须知:如何正确求助?哪些是违规求助? 4468659
关于积分的说明 13906220
捐赠科研通 4361687
什么是DOI,文献DOI怎么找? 2395919
邀请新用户注册赠送积分活动 1389377
关于科研通互助平台的介绍 1360181