Predicting the invasiveness of lung adenocarcinomas appearing as ground-glass nodule on CT scan using multi-task learning and deep radiomics

深度学习 无线电技术 腺癌 医学 人工智能 放射科 计算机科学 癌症 内科学
作者
Xiang Wang,Qingchu Li,Jiali Cai,Wei Wang,Peng Xu,Yiqian Zhang,Fang Qu,Chi-Cheng Fu,Li Fan,Yi Xiao,Shiyuan Liu
出处
期刊:Translational lung cancer research [AME Publishing Company]
卷期号:9 (4): 1397-1406 被引量:46
标识
DOI:10.21037/tlcr-20-370
摘要

Due to different treatment method and prognosis of different subtypes of lung adenocarcinomas appearing as ground-glass nodules (GGNs) on computed tomography (CT) scan, it is important to classify invasive adenocarcinomas from non-invasive adenocarcinomas. The purpose of this paper is to build and evaluate the performance of deep learning networks on the differentiation the invasiveness of lung adenocarcinoma appearing as GGNs.This retrospective study included 886 GGNs from 794 pathological confirmed patients with lung adenocarcinoma for training and testing the proposed networks. Three deep learning networks, namely XimaNet (deep learning-based classification model), XimaSharp (classification and nodule segmentation model), and Deep-RadNet (deep learning and radiomics combined classification model, i.e., deep radiomics) were built. Three classification tasks, namely task 1: classification of AAH/AIS and MIA, task 2: classification of MIA and IAC, and task 3: classification of non-invasive adenocarcinomas and invasive adenocarcinomas (AAH/AIS&MIA and IAC) were conducted to evaluate the model performance. The Z-test was used to compare the model performance.The AUC for classification of AAH/AIS with MIA were 0.891, 0.841 and 0.779 for Deep-RadNet, XimaNet and XimaSharp respectively. The AUC for classification of MIA with IAC were 0.889, 0.785 and 0.778 for three networks and AUC for classification of AAH/AIS&MIA with IAC were 0.941, 0.892 and 0.827 respectively. The performance of deep_RadNet was better than the other two models with the Z-test (P<0.05).Deep-RadNet with the visual heat map could evaluate the invasiveness of GGNs accurately and intuitively, providing a theoretical basis for individualized and accurate medical treatment of patients with GGNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
香蕉觅云应助小兔叽采纳,获得10
刚刚
1秒前
wjj119完成签到,获得积分10
1秒前
Genius完成签到 ,获得积分10
2秒前
LIXI发布了新的文献求助10
3秒前
超级无心完成签到,获得积分10
3秒前
靓丽的发箍完成签到,获得积分10
4秒前
可爱的函函应助奋斗金连采纳,获得10
6秒前
Fancy发布了新的文献求助10
6秒前
adgcxvjj发布了新的文献求助10
6秒前
清秀谷南发布了新的文献求助10
6秒前
wnan_07完成签到,获得积分10
7秒前
111完成签到,获得积分10
8秒前
阿白发布了新的文献求助10
8秒前
TTL完成签到,获得积分10
9秒前
11秒前
搜集达人应助大虫子采纳,获得10
11秒前
无花果应助清新的冷荷采纳,获得30
11秒前
小蘑菇应助沉静的雨采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
Meyako应助LIXI采纳,获得10
13秒前
郜幼枫应助LIXI采纳,获得10
13秒前
杨程羽完成签到 ,获得积分10
14秒前
陈欣瑶发布了新的文献求助10
14秒前
14秒前
yao发布了新的文献求助10
15秒前
顾北发布了新的文献求助10
16秒前
CodeCraft应助Albert采纳,获得10
16秒前
筱谭完成签到 ,获得积分10
16秒前
路不迷发布了新的文献求助30
17秒前
17秒前
顾涵山发布了新的文献求助20
18秒前
18秒前
小兔叽发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4406962
求助须知:如何正确求助?哪些是违规求助? 3892083
关于积分的说明 12111654
捐赠科研通 3537028
什么是DOI,文献DOI怎么找? 1940846
邀请新用户注册赠送积分活动 981611
科研通“疑难数据库(出版商)”最低求助积分说明 878106