Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network.

模式识别(心理学) 语音识别 人工神经网络 特征(语言学) 特征提取 机器学习 任务(项目管理)
作者
Yu Liu,Yufeng Ding,Chang Li,Juan Cheng,Rencheng Song,Feng Wan,Xun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:123: 103927- 被引量:28
标识
DOI:10.1016/j.compbiomed.2020.103927
摘要

In recent years, deep learning (DL) techniques, and in particular convolutional neural networks (CNNs), have shown great potential in electroencephalograph (EEG)-based emotion recognition. However, existing CNN-based EEG emotion recognition methods usually require a relatively complex stage of feature pre-extraction. More importantly, the CNNs cannot well characterize the intrinsic relationship among the different channels of EEG signals, which is essentially a crucial clue for the recognition of emotion. In this paper, we propose an effective multi-level features guided capsule network (MLF-CapsNet) for multi-channel EEG-based emotion recognition to overcome these issues. The MLF-CapsNet is an end-to-end framework, which can simultaneously extract features from the raw EEG signals and determine the emotional states. Compared with original CapsNet, it incorporates multi-level feature maps learned by different layers in forming the primary capsules so that the capability of feature representation can be enhanced. In addition, it uses a bottleneck layer to reduce the amount of parameters and accelerate the speed of calculation. Our method achieves the average accuracy of 97.97%, 98.31% and 98.32% on valence, arousal and dominance of DEAP dataset, respectively, and 94.59%, 95.26% and 95.13% on valence, arousal and dominance of DREAMER dataset, respectively. These results show that our method exhibits higher accuracy than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助niu采纳,获得10
1秒前
彭于晏应助俭朴的猫咪采纳,获得10
5秒前
6秒前
斯文败类应助lcw采纳,获得10
6秒前
kokodayo1919发布了新的文献求助10
7秒前
8秒前
zzz完成签到 ,获得积分10
9秒前
9秒前
yiyao完成签到,获得积分10
9秒前
9秒前
heal完成签到,获得积分10
10秒前
12秒前
Guoqiang发布了新的文献求助10
13秒前
超锅发布了新的文献求助10
13秒前
陈可欣发布了新的文献求助10
14秒前
封雪婷完成签到 ,获得积分10
16秒前
Pt-SACs发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
20秒前
20秒前
完美世界应助heal采纳,获得10
20秒前
月啦啦发布了新的文献求助10
23秒前
科研通AI5应助谨慎的雁桃采纳,获得30
24秒前
qqq发布了新的文献求助10
24秒前
Orange应助陈可欣采纳,获得10
24秒前
SunnyZjw发布了新的文献求助10
25秒前
daidai发布了新的文献求助10
25秒前
26秒前
上善若水完成签到 ,获得积分10
27秒前
深情安青应助土拨鼠采纳,获得10
27秒前
Jasper应助CHB只争朝夕采纳,获得10
28秒前
Abelsci完成签到,获得积分0
28秒前
Wangchenghan发布了新的文献求助10
29秒前
30秒前
烟花应助拉赫马尼洛夫采纳,获得30
34秒前
月啦啦完成签到,获得积分10
36秒前
科研通AI5应助阿渺采纳,获得10
36秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780550
求助须知:如何正确求助?哪些是违规求助? 3326021
关于积分的说明 10225203
捐赠科研通 3041114
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799021
科研通“疑难数据库(出版商)”最低求助积分说明 758669