Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network.

模式识别(心理学) 语音识别 人工神经网络 特征(语言学) 特征提取 机器学习 任务(项目管理)
作者
Yu Liu,Yufeng Ding,Chang Li,Juan Cheng,Rencheng Song,Feng Wan,Xun Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:123: 103927- 被引量:28
标识
DOI:10.1016/j.compbiomed.2020.103927
摘要

In recent years, deep learning (DL) techniques, and in particular convolutional neural networks (CNNs), have shown great potential in electroencephalograph (EEG)-based emotion recognition. However, existing CNN-based EEG emotion recognition methods usually require a relatively complex stage of feature pre-extraction. More importantly, the CNNs cannot well characterize the intrinsic relationship among the different channels of EEG signals, which is essentially a crucial clue for the recognition of emotion. In this paper, we propose an effective multi-level features guided capsule network (MLF-CapsNet) for multi-channel EEG-based emotion recognition to overcome these issues. The MLF-CapsNet is an end-to-end framework, which can simultaneously extract features from the raw EEG signals and determine the emotional states. Compared with original CapsNet, it incorporates multi-level feature maps learned by different layers in forming the primary capsules so that the capability of feature representation can be enhanced. In addition, it uses a bottleneck layer to reduce the amount of parameters and accelerate the speed of calculation. Our method achieves the average accuracy of 97.97%, 98.31% and 98.32% on valence, arousal and dominance of DEAP dataset, respectively, and 94.59%, 95.26% and 95.13% on valence, arousal and dominance of DREAMER dataset, respectively. These results show that our method exhibits higher accuracy than the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeezZZZ发布了新的文献求助10
刚刚
刚刚
黄学生完成签到 ,获得积分10
刚刚
刚刚
华仔应助二智娃娃采纳,获得10
1秒前
不吃番茄完成签到,获得积分10
1秒前
核桃发布了新的文献求助10
2秒前
3秒前
3秒前
eehbebha发布了新的文献求助10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
英姑应助冷清之采纳,获得10
6秒前
Orange应助冷清之采纳,获得10
6秒前
科研通AI5应助犹豫的怜珊采纳,获得10
6秒前
科研通AI5应助LLL采纳,获得10
6秒前
lwl发布了新的文献求助10
7秒前
8秒前
KComboN完成签到 ,获得积分10
8秒前
赘婿应助LeezZZZ采纳,获得10
9秒前
沉默的婴发布了新的文献求助10
9秒前
9秒前
9秒前
领导范儿应助任润采纳,获得10
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
13秒前
CodeCraft应助happy星采纳,获得10
13秒前
14秒前
14秒前
sunjr完成签到,获得积分10
14秒前
风清扬发布了新的文献求助150
15秒前
Orange应助不来也不去采纳,获得10
16秒前
16秒前
CodeCraft应助DEYING采纳,获得10
17秒前
17秒前
17秒前
熊尼发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676618
求助须知:如何正确求助?哪些是违规求助? 4054330
关于积分的说明 12537287
捐赠科研通 3748475
什么是DOI,文献DOI怎么找? 2070437
邀请新用户注册赠送积分活动 1099433
科研通“疑难数据库(出版商)”最低求助积分说明 979134