Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity

材料科学 复合材料 纤维素乙醇 电导率 化学工程 压缩性 纤维素 高分子科学 热力学 物理化学 化学 物理 工程类
作者
Chaoji Chen,Jianwei Song,Jian Cheng,Zhenqian Pang,Wentao Gan,Gegu Chen,Yudi Kuang,Haojie Chen,Upamanyu Ray,Teng Li,Liangbing Hu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:14 (12): 16723-16734 被引量:142
标识
DOI:10.1021/acsnano.0c04298
摘要

Anisotropic cellular materials with direction-dependent structure and durable mechanical properties enable various applications (e.g., nanofluidics, biomedical devices, tissue engineering, and water purification), but their widespread use is often hindered by complex and scale-limited fabrication and unsatisfactory mechanical performance. Here, inspired by the anisotropic and hierarchical material structure of tendons, we demonstrate a facile, scalable top-down approach for fabricating a highly elastic, ionically conductive, anisotropic cellulosic material (named elastic wood) directly from natural wood via chemical treatment. The resulting elastic wood demonstrates good elasticity and durable compressibility, showing no sign of fatigue after 10 000 compression cycles. The chemical treatment not only softens the wood cell walls by partially removing lignin and hemicellulose but introduces an interconnected cellulose fibril network into the wood channels. Atomistic and continuum modeling further reveals that the absorbed water can freely and reversibly move inside the elastic wood and therefore helps the elastic wood accommodate large compressive deformation and recover to its original shape upon compression release. In addition, the elastic wood showed a high ionic conductivity of up to 0.5 mS cm-1 at a low KCl concentration of 10-4 M, which can be tuned by changing the compression ratio of the material. The demonstrated elastic, mechanically robust, and ionically conductive cellulosic material combining inherited anisotropic cellular structure from natural wood and a self-formed internal gel may find a variety of potential applications in ionic nanofluidics, sensors, soft robots, artificial muscle, environmental remediation, and energy storage.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一万发布了新的文献求助10
刚刚
Zz完成签到,获得积分10
1秒前
Hi完成签到,获得积分20
1秒前
1秒前
慧海拾穗发布了新的文献求助30
1秒前
哈哈哈发布了新的文献求助10
1秒前
1秒前
Frank应助房天川采纳,获得10
2秒前
2秒前
2秒前
王xingxing完成签到 ,获得积分10
2秒前
Ethan完成签到,获得积分10
2秒前
691发布了新的文献求助10
2秒前
xmx完成签到 ,获得积分10
3秒前
Ace完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
joruruo发布了新的文献求助10
3秒前
4秒前
4秒前
大模型应助Lucy1069089289采纳,获得10
4秒前
呆萌的荔枝完成签到 ,获得积分10
4秒前
雪下的地完成签到,获得积分10
5秒前
5秒前
肌肉猛男完成签到,获得积分10
5秒前
PHI发布了新的文献求助10
5秒前
6秒前
哈哈哈完成签到 ,获得积分10
6秒前
6秒前
勤恳的若风完成签到,获得积分10
6秒前
Sky完成签到,获得积分10
7秒前
kk发布了新的文献求助10
7秒前
Hilda007应助zhulinkin采纳,获得10
7秒前
8秒前
qwe完成签到,获得积分10
8秒前
8秒前
美好斓发布了新的文献求助10
9秒前
谢朝邦完成签到 ,获得积分10
9秒前
CHENG_2025完成签到,获得积分10
9秒前
温暖乐枫发布了新的文献求助10
9秒前
田田文章发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477193
求助须知:如何正确求助?哪些是违规求助? 4579076
关于积分的说明 14366834
捐赠科研通 4507194
什么是DOI,文献DOI怎么找? 2469746
邀请新用户注册赠送积分活动 1456876
关于科研通互助平台的介绍 1430894