When Dictionary Learning Meets Deep Learning: Deep Dictionary Learning and Coding Network for Image Recognition With Limited Data

计算机科学 深度学习 联营 K-SVD公司 人工智能 词典学习 神经编码 卷积神经网络 判别式 编码(社会科学) 模式识别(心理学) 源代码 自然语言处理 语音识别 稀疏逼近 数学 统计 操作系统
作者
Hao Tang,Hong Liu,Xiao Wei,Nicu Sebe
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (5): 2129-2141 被引量:67
标识
DOI:10.1109/tnnls.2020.2997289
摘要

We present a new deep dictionary learning and coding network (DDLCN) for image-recognition tasks with limited data. The proposed DDLCN has most of the standard deep learning layers (e.g., input/output, pooling, and fully connected), but the fundamental convolutional layers are replaced by our proposed compound dictionary learning and coding layers. The dictionary learning learns an overcomplete dictionary for input training data. At the deep coding layer, a locality constraint is added to guarantee that the activated dictionary bases are close to each other. Then, the activated dictionary atoms are assembled and passed to the compound dictionary learning and coding layers. In this way, the activated atoms in the first layer can be represented by the deeper atoms in the second dictionary. Intuitively, the second dictionary is designed to learn the fine-grained components shared among the input dictionary atoms; thus, a more informative and discriminative low-level representation of the dictionary atoms can be obtained. We empirically compare DDLCN with several leading dictionary learning methods and deep learning models. Experimental results on five popular data sets show that DDLCN achieves competitive results compared with state-of-the-art methods when the training data are limited. Code is available at https://github.com/Ha0Tang/DDLCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助xishanmeng采纳,获得10
1秒前
酷波er应助cosimo采纳,获得10
1秒前
1秒前
烟花应助包容的初南采纳,获得10
1秒前
霜鸣发布了新的文献求助10
2秒前
sunlanglang完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
andrele应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得30
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
ewyzero应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
传奇3应助plateauman采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
今后应助科研通管家采纳,获得10
6秒前
坚定深蓝应助科研通管家采纳,获得10
6秒前
6秒前
桓某人完成签到,获得积分10
7秒前
刻苦寄松发布了新的文献求助10
7秒前
小歪完成签到,获得积分10
10秒前
10秒前
11秒前
思源应助霜鸣采纳,获得10
11秒前
humengxiao完成签到,获得积分10
12秒前
哎呀完成签到,获得积分10
13秒前
落后的凝梦完成签到 ,获得积分10
14秒前
笑而不语完成签到 ,获得积分10
15秒前
16秒前
科目三应助DC-CIK军团采纳,获得10
17秒前
Aaron完成签到 ,获得积分10
18秒前
李健应助sjk采纳,获得30
21秒前
plateauman发布了新的文献求助10
21秒前
兴奋的静竹完成签到 ,获得积分10
23秒前
莫离完成签到 ,获得积分10
23秒前
烟花应助滴滴滴采纳,获得10
26秒前
Jenny完成签到,获得积分10
27秒前
31秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
The acute effects of performing drop jumps of different intensities on concentric squat strength 200
International standard-setting alliance and its possible negative effect on consumer's technology acceptance and technology progress 200
Erectile dysfunction From bench to bedside 200
Integrated supply chain risk management capabilities and its impact on supply chain demand management - an empirical study 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824721
求助须知:如何正确求助?哪些是违规求助? 3367001
关于积分的说明 10444139
捐赠科研通 3086367
什么是DOI,文献DOI怎么找? 1697952
邀请新用户注册赠送积分活动 816614
科研通“疑难数据库(出版商)”最低求助积分说明 769835