钠
适口性
食品科学
化学
食物腐败
盐(化学)
钾
食品安全
生物
细菌
遗传学
物理化学
有机化学
作者
Venus Bansal,Santosh Kumar Mishra
标识
DOI:10.1111/1541-4337.12524
摘要
Abstract Sodium chloride (NaCl) universally well‐known as table salt is an ancient food additive, which is broadly used to increase the storage stability and the palatability of foods. Though, in recent decades, use of table salt in foods is a major concern among the health agencies of the world owing to ill effects of sodium (Na) that are mostly linked to hypertension and cardiovascular diseases. As a result, food scientists are working to decrease the sodium content in food either by decreasing the rate of NaCl addition or by partial or full replacement of NaCl with other suitable salts like potassium chloride (KCl), calcium chloride (CaCl 2 ), or magnesium chloride (MgCl 2 ). However, in cheese, salt reduction is difficult to accomplish owing to its multifaceted role in cheese making. Considering the significant contribution in dietary salt intake (DSI) from cheese, researchers across the globe are exploring various technical interventions to develop reduced‐sodium cheeses (RSCs) without jeopardizing the quality and safety of cheeses. Thus, the purpose of this study is to provide an insight of NaCl reduction on sensory, physicochemical, and technofunctional attributes of RSCs with an aim to explore various strategies for salt reduction without affecting the cheese quality and safety. The relationship between salt reduction and survival of pathogenic and spoilage‐causing microorganisms and growth of RSCs microflora is also discussed. Based on the understanding of conceptual and applied information on the complex changes that occur in the development of RSCs, the quality and safety of RSCs can be accomplished effectively in order to reduce the DSI from cheese.
科研通智能强力驱动
Strongly Powered by AbleSci AI