Forecasting daily stock trend using multi-filter feature selection and deep learning

计算机科学 人工智能 特征选择 生成模型 库存(枪支) 股票市场 计量经济学 机器学习 数据挖掘 生成语法 经济 机械工程 工程类 古生物学 生物
作者
Anwar Ul Haq,Adnan Zeb,Zhenfeng Lei,Defu Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:168: 114444-114444 被引量:127
标识
DOI:10.1016/j.eswa.2020.114444
摘要

Abstract Stock market forecasting has attracted significant attention mainly due to the potential monetary benefits. Predicting these markets is a challenging task due to numerous interrelated factors, and needs a complete and efficient feature selection process to identify the most informative factors. As a time series problem, stock price movements are also dependent on movements on its previous trading days. Feature selection techniques have been widely applied in stock forecasting, but existing approaches usually use a single feature selection technique, which may overlook some important assumptions about the underlying regression function linking the input and output variables. In this study, we combine features selected by multiple feature selection techniques to generate an optimal feature subset and then use a deep generative model to predict future price movements. First, we compute an extended set of forty-four technical indicators from daily stock data of eighty-eight stocks and then compute their importance by independently training logistic regression model, support vector machine and random forests. Based on a prespecified threshold, the lowest ranked features are dropped and the rest are grouped into clusters. The variable importance measure is reused to select the most important feature from each cluster to generate the final subset. The input is then fed to a deep generative model comprising of a market signal extractor and an attention mechanism. The market signal extractor recurrently decodes market movement from the latent variables to deal with stochastic nature of the stock data and the attention mechanism discriminates between predictive dependencies of different temporal auxiliary outputs. The results demonstrate that combining features selected by multiple feature selection approaches and using them as input into a deep generative model outperforms state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rational完成签到,获得积分10
刚刚
1秒前
ShawnLyu应助畅快的紫烟采纳,获得10
1秒前
pluto应助畅快的紫烟采纳,获得10
1秒前
ShawnLyu应助畅快的紫烟采纳,获得10
2秒前
ShawnLyu应助畅快的紫烟采纳,获得10
2秒前
科研助手6应助畅快的紫烟采纳,获得10
2秒前
冰魂应助畅快的紫烟采纳,获得10
2秒前
冰魂应助畅快的紫烟采纳,获得10
2秒前
冰魂应助畅快的紫烟采纳,获得10
2秒前
冰魂应助畅快的紫烟采纳,获得10
2秒前
冰魂应助畅快的紫烟采纳,获得10
2秒前
FashionBoy应助yu采纳,获得10
2秒前
2秒前
文静大娘完成签到,获得积分10
3秒前
bbb发布了新的文献求助10
3秒前
SYLH完成签到,获得积分0
4秒前
5秒前
轩贝发布了新的文献求助20
6秒前
rational发布了新的文献求助10
7秒前
优势构象发布了新的文献求助50
7秒前
盛夏如花发布了新的文献求助10
8秒前
眼泪成诗完成签到 ,获得积分10
9秒前
科研助手6应助畅快的紫烟采纳,获得10
9秒前
科研助手6应助畅快的紫烟采纳,获得10
9秒前
9秒前
9秒前
ShawnLyu应助畅快的紫烟采纳,获得10
9秒前
10秒前
科研通AI2S应助畅快的紫烟采纳,获得10
10秒前
科研通AI2S应助畅快的紫烟采纳,获得10
10秒前
科研通AI2S应助畅快的紫烟采纳,获得10
10秒前
ShawnLyu应助畅快的紫烟采纳,获得10
10秒前
仁和完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
轩贝完成签到,获得积分10
14秒前
SpONGeBOb发布了新的文献求助10
15秒前
滕黎云发布了新的文献求助10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800124
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10324980
捐赠科研通 3061918
什么是DOI,文献DOI怎么找? 1680596
邀请新用户注册赠送积分活动 807139
科研通“疑难数据库(出版商)”最低求助积分说明 763509