已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Person Re-Identification by Contour Sketch Under Moderate Clothing Change

人工智能 素描 计算机科学 计算机视觉 鉴定(生物学) 模式识别(心理学) 服装 地理 算法 生物 考古 植物
作者
Qize Yang,Ancong Wu,Wei‐Shi Zheng
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:43 (6): 2029-2046 被引量:182
标识
DOI:10.1109/tpami.2019.2960509
摘要

Person re-identification (re-id), the process of matching pedestrian images across different camera views, is an important task in visual surveillance. Substantial development of re-id has recently been observed, and the majority of existing models are largely dependent on color appearance and assume that pedestrians do not change their clothes across camera views. This limitation, however, can be an issue for re-id when tracking a person at different places and at different time if that person (e.g., a criminal suspect) changes his/her clothes, causing most existing methods to fail, since they are heavily relying on color appearance and thus they are inclined to match a person to another person wearing similar clothes. In this work, we call the person re-id under clothing change the "cross-clothes person re-id". In particular, we consider the case when a person only changes his clothes moderately as a first attempt at solving this problem based on visible light images; that is we assume that a person wears clothes of a similar thickness, and thus the shape of a person would not change significantly when the weather does not change substantially within a short period of time. We perform cross-clothes person re-id based on a contour sketch of person image to take advantage of the shape of the human body instead of color information for extracting features that are robust to moderate clothing change. Due to the lack of a large-scale dataset for cross-clothes person re-id, we contribute a new dataset that consists of 33698 images from 221 identities. Our experiments illustrate the challenges of cross-clothes person re-id and demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柠檬柠檬完成签到 ,获得积分10
1秒前
怕孤独的忆南完成签到,获得积分10
6秒前
shuang完成签到 ,获得积分10
7秒前
13秒前
动漫大师发布了新的文献求助10
14秒前
DChen完成签到,获得积分10
15秒前
15秒前
伶俐映真完成签到,获得积分10
15秒前
Lupoate完成签到,获得积分10
16秒前
16秒前
诚心的信封完成签到 ,获得积分10
19秒前
DChen发布了新的文献求助10
20秒前
Lupoate发布了新的文献求助10
20秒前
丰富的绮波完成签到 ,获得积分10
21秒前
SPUwangshunfeng完成签到,获得积分10
22秒前
smm完成签到 ,获得积分10
24秒前
耳东陈完成签到 ,获得积分10
24秒前
对照完成签到 ,获得积分10
25秒前
白白一只耶完成签到 ,获得积分10
27秒前
qiany完成签到,获得积分20
28秒前
28秒前
28秒前
李fr应助Phoenix采纳,获得50
29秒前
直率柠檬发布了新的文献求助10
31秒前
31秒前
Xiaopan_Xu发布了新的文献求助10
32秒前
苏晓聪完成签到,获得积分10
35秒前
Cu完成签到 ,获得积分10
37秒前
冷酷愚志完成签到,获得积分10
38秒前
小饼饼发布了新的文献求助10
41秒前
42秒前
在水一方应助科研通管家采纳,获得10
44秒前
科研通AI5应助科研通管家采纳,获得10
44秒前
英姑应助科研通管家采纳,获得10
44秒前
共享精神应助科研通管家采纳,获得10
44秒前
小哲发布了新的文献求助10
46秒前
aike完成签到,获得积分10
47秒前
年鱼精完成签到 ,获得积分10
47秒前
48秒前
48秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815663
求助须知:如何正确求助?哪些是违规求助? 3359277
关于积分的说明 10401860
捐赠科研通 3077021
什么是DOI,文献DOI怎么找? 1690059
邀请新用户注册赠送积分活动 813650
科研通“疑难数据库(出版商)”最低求助积分说明 767694