胶质瘤
血管生成拟态
血管生成
药物输送
癌症研究
体内
血脑屏障
阿霉素
药理学
医学
生物
化学
化疗
癌症
内科学
中枢神经系统
生物技术
有机化学
转移
作者
Ying Man,Changyou Zhan,Songli Wang,Bingxin Yao,Xuefeng Hu,Xianfei Song,Mingfei Zhang,Xiaoli Wei,Yan Xiong,Weiyue Lu
标识
DOI:10.1021/acsami.6b10146
摘要
As the most aggressive brain tumor, chemotherapy of malignant glioma remains to be extremely challenging in clinic. The blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) are physiological and pathological barriers preventing therapeutic drugs from reaching the glioma region. In addition, vasculogenic mimicry (VM) formed by invasive glioma cells instead of endothelial cells and angiogenesis are very common in glioma, leading to the poor prognosis and recurrence of glioma. An ideal drug delivery system for glioma chemotherapy needs to traverse the BBB and BBTB and then target VM, angiogenesis, and glioma cells. Herein we developed a liposome-based drug delivery system with the modification of proteolytically stable d-peptide ligands (dCDX/dA7R-LS). dCDX is a d-peptide ligand of nicotine acetylcholine receptors (nAChRs) capable of circumventing the BBB, and dA7R is a d-peptide ligand of vascular endothelial growth factor receptor 2 (VEGFR2) and neuropilin-1 (NRP-1) overexpressed on angiogenesis, VM, and glioma, presenting excellent glioma-homing property. dCDX/dA7R-LS could efficiently internalize into the brain capillary endothelial cells, glioma cells, tumor neovascular endothelial cells, and tumor spheroids and cross the in vitro BBB and BBTB models. Ex vivo imaging and in vivo immunofluorescence assays confirmed the superiority of dCDX/dA7R-LS in targeting intracranial glioma in comparison to plain liposomes or liposomes modified with an individual d-peptide ligand (either dCDX or dA7R). When loaded with doxorubicin, dCDX/dA7R-LS achieved the best antiglioma, antiangiogenesis, and anti-VM effects among all tested formulations. These results suggested that systemic glioma-targeted drug delivery enabled by all-d peptide ligands was promising for the antiglioma therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI